Skip to main content
Log in

Global trends in the evolution of metallogenic processes as a reflection of supercontinent cyclicity

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

The worldwide distribution of large and superlarge mineral deposits (LSLDs) on a geological time scale is analyzed. It has been established that their formation from Eoarchean to Cenozoic was nonuniform in time. The maxima and minima of ore generation intensity correlate well with global cyclical processes, eventually resulting in the assembly and breakup of supercontinents. The periods of supercontinent amalgamation are characterized by the highest rate of continental crust growth due to the contribution of juvenile sources, a maximum of orogenic activity, and the most intense deposit formation. Periods close to betweencycle boundaries are distinguished by a low intensity of both endogenic and ore-forming processes. As follows from the available data, the number of known LSLDs slightly decreases from the Kenoran to Columbian cycle, significantly decreases in the next Rodinian cycle, which, in turn, is followed by abrupt growth in the Pangaean and Amasian cycles, especially as concerns LSLDs of the granitoid-related class. The intensification of metallogenic activity correlates with a commensurable increase in orogenic activity of the Earth’s crust probably caused by continental crust expansion, an increase in the number of sialic blocks participating in the formation of accretionary and collisional orogens, and acceleration of lithospheric plate motion. Some trends are also described for other LSLD classes (basic–alkaline, volcanic-hosted massive sulfide, sedimentary, epigenetic sediment-hosted), caused to a certain extent by supercontinent cycles and their evolutionary variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, D.H. and Isley, A.E., The intensity, occurrence, and duration of superplume events and eras over geological time, J. Geodynamics, 2002, vol. 34, pp. 265–307.

    Article  Google Scholar 

  • Arevalo, R., McDonough, W.F., and Luong, M., The K/U ratio of the silicate earth: insights into mantle composition, structure and thermal evolution, Earth Planet. Sci. Lett., 2009, vol. 278, pp. 361–369.

    Article  Google Scholar 

  • Balashov, Yu.A and Glaznev, V.N., Cycles of alkaline magmatism, Geochem. Int., 2006, vol. 44, no. 3, pp. 274–285.

    Article  Google Scholar 

  • Barley, M.E. and Groves, D.I., Supercontinent cycles and the distribution of metal deposits through time, Geology, 1992, vol. 20, pp. 291–294.

    Article  Google Scholar 

  • Bekker, A., Slack, J.F., Planavsky, N., et al., Iron formation: a sedimentary product of the complex interplay among mantle, tectonic, and biospheric processes, Econ. Geol., 2010, vol. 105, pp. 467–508.

    Article  Google Scholar 

  • Bierlein, F.P., Groves, D.I., and Cawood, P.A., Metallogeny of accretionary orogens–the connection between lithospheric processes and metal endowment, Ore. Geol. Rev., 2009, vol. 36, pp. 282–292.

    Article  Google Scholar 

  • Bierlein, F.B. and Wilde, A.R., New constraints on the polychromous nature of the giant Muruntau gold deposit from wall-rock alteration and ore paragenetic studies, Aust. J. Earth Sci., 2010, vol. 57, pp. 839–851.

    Article  Google Scholar 

  • Blatt, H., Tracy, R.J., and Owens, B.E., Petrology: Igneous, Sedimentary and Metamorphic, 3rd. Ed., New York: Freman and Co, 2006.

    Google Scholar 

  • Bleeker, W., The Late Archean record: a puzzle in c.35 pieces, Lithos, 2003, vol. 71, pp. 99–134.

    Article  Google Scholar 

  • Bogatikov, O.A., Bogdanova, S.V., Borsuk, A.M., et al., Magmaticheskie gornye porody. T. 6. Evolyutsiya magmatizma v istorii Zemli (Igneous Rocks. Volume 6. Evolution of Magmatism in the Earth’s History), Moscow: Nauka, 1987.

    Google Scholar 

  • Bogatikov, O.A., Bogina, M.M., Bubnov, S.N., et al., Tipy magm i ikh istochniki v istorii Zemli. Ch. 1. Magmatizm i geodinamika–glavnye faktory evolyutsii Zemli (Types of Magmas and their Sources in the Earth’s History. Part 1. Magmatism and Geodynamics–-Main Factors of the Earth’s Evolution), Moscow: IGEM RAN, 2006.

    Google Scholar 

  • Bogatikov, O.A., Kovalenko, V.I., and Sharkov, E.V., Magmatizm, tektonika, geodinamika Zemli: svyaz' vo vremeni i v prostranstve (Magmatism, Tectonics, and Geodynamics of the Earth: Spatiotemporal Relation), Moscow: IGEM RAN, 2010.

    Google Scholar 

  • Bogdanova, S.V., Pisarevsky, S.A., and Li, Z.X., Assembly and breakup of Rodinia (some results of IGCP Project 440), Stratigr. Geol. Correl., 2009, vol. 17, no. 3, pp. 259–274.

    Article  Google Scholar 

  • Bortnikov, N.S., Gamyanin, G.N., Vikent’eva, O.V., et al., Fluid composition and origin in the hydrothermal system of the Nezhdaninsky gold deposit, Sakha (Yakutia), Russia, Geol. Ore Deposits, 2007, vol. 49, no. 2, pp. 99–45.

    Article  Google Scholar 

  • Bouysse, Ph., and coll. Geological Map of the World at 1: 25000000, 3rd edition, Paris: CGMW, 2010.

    Google Scholar 

  • Bozhko, N.A., Supercontinental Cyclicity in the Earth’s Evolution, Moscow Univ. Geology Bull., 2009, vol. 64, iss. 2, pp. 75–91.

    Article  Google Scholar 

  • Bozhko, N.A., On two types of supercontinental cyclicity, Moscow Univ. Geology Bull., 2011, vol. 66, iss. 5, pp. 313–322.

    Article  Google Scholar 

  • Bradley, D.C., Passive margins through earth history, Earth-Sci Rev., 2008, vol. 91, pp. 1–26.

    Article  Google Scholar 

  • Brown, A.C., Refinements for footwall red-bed diagenesis in the sediment-hosted stratiform copper deposits model, Econ. Geol., 2005, vol. 100, pp. 765–771.

    Google Scholar 

  • Cawood P.A., Kröner A., Collins W.J. et al., Accretionary orogens through earth history, Geol. Soc. London: Spec. Publ., 2009, vol. 318, pp. 1–36.

    Article  Google Scholar 

  • Coltice, N., Phillips, B.R., Bertrand, H., et al., Global warming of the mantle at the origin of flood basalts over supercontinents, Geology, 2007, vol. 35, pp. 391–394.

    Article  Google Scholar 

  • Coltice, N., Bertrand, H., Rey, P., Jourdan, F., et al., Global warming of the mantle beneath continents back to the archaean, Gondwana Res., 2009, vol. 15, pp. 254–266.

    Article  Google Scholar 

  • Condie, K.C., Episodic continental growth and supercontinents: a mantle avalanche connection?, Earth Planet. Sci. Lett., 1998, vol. 163, pp. 97–108.

    Article  Google Scholar 

  • Condie, K.C. and Aster, R.C., Episodic zircon age spectra of orogenic granitoids: the supercontinent connection and continental growth, Precambrian Res., 2010, vol. 180, pp. 227–236.

    Article  Google Scholar 

  • Condie, K.C., Preservation and recycling of crust during accretionary and collisional phases of Proterozoic orogens: a bumpy road from Nuna to Rodinia, Geosci., 2013, vol. 3, pp. 240–261.

    Article  Google Scholar 

  • Condie, K.C. and Aster, R.C., Refinement of the supercontinent cycle with Hf, Nd and Sr isotopes, Geosci. Front., 2013, vol. 4, pp. 667–680.

    Article  Google Scholar 

  • Cuney, M., Emetz, A., Mercadier, J., et al., Uranium deposits associated with Na-metasomatism from central Ukraine: a review of some of the major deposits and genetic constraints, Ore Geol. Rev., 2012, vol. 44, pp. 82–106.

    Article  Google Scholar 

  • Dergachev, A.L. and Eremin, N.I., Proportions of massivesulfide and strata-bound lead-zinc mineralization during the Earth’s evolution, Moscow Univ. Geology Bull., 2008, vol. 63, iss. 4, pp. 237–246.

    Article  Google Scholar 

  • Dergachev, A.L., Evolution of volcanic-hosted massive sulfide formation in the Earth’s history, Extended Abstract of Doctoral (Geolmin) Dissertation, Moscow: Mosk. Gos. Univ., 2010.

    Google Scholar 

  • Eremin, N.I., Dergachev, A.L., Sergeeva, Nat. E, et al., Types of volcanic-hosted massive sulfide deposits, Geol. Ore Deposits, 2000, vol. 42, no. 2, pp. 160–171.

    Google Scholar 

  • Evans, D.A.D., Reconstructing pre-Pangean supercontinents, Geol. Soc. Am. Bull., 2013, vol. 125, pp. 1735–1751.

    Article  Google Scholar 

  • Fedo, C.M., Sircombe, K.N., and Rainbird, R.H., Detrital zircon analysis of the sedimentary record, in Zircon, Rev. Mineral. Geochem, 2003, vol. 53, pp. 277–303.

    Article  Google Scholar 

  • Franklin, J.M., Gibson, H.L., Jonasson, I.R., et al., Volcanogenic massive sulfide deposits, Economic Geology 100th Anniversary Volume, Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., Eds., Littleton, Colorado: Society of Economic Geologists, 2005, pp. 523–560.

  • Fu, B., Kendrick, M.A., Fairmaid, A.M., et al., New constraints on fluid sources in orogenic gold deposits, Victoria, Australia, Contrib. Mineral. Petrol., 2012, vol. 163, pp. 427–447.

    Article  Google Scholar 

  • Goldfarb, R.J., Groves, D.I., and Gardoll, S., Orogenic gold and geologic time: a global synthesis, Ore Geol. Rev., 2001, vol. 18, pp. 1–75.

    Article  Google Scholar 

  • Graupner, T., Niedermann, S., Rhede, D., et al., Multiple sources for mineralizing fluids in the Charmitan gold(- tungsten) mineralization (Uzbekistan), Miner. Deposita, 2010, vol. 45, pp. 667–682.

    Article  Google Scholar 

  • Gray, D.R., Foster, D.A., Meert, J.G., et al., A Damaran perspective on the assembly of southwestern Gondwana, Spec. Publ.–Geol. Soc. London, 2008, vol. 294, pp. 257–278.

    Article  Google Scholar 

  • Groves, D.I. and Bierlein, F.P., Geodynamic settings of mineral deposit systems, J. Geol. Soc. London, 2007, vol. 164, pp. 19–30.

    Article  Google Scholar 

  • Groves, D.I., Vielreicher, R.M., Goldfarb, R.J., et al., Controls on the heterogeneous distribution of mineral deposits through time, Spec. Publ.–Geol. Soc. London, 2005, vol. 248, pp. 71–101.

    Article  Google Scholar 

  • Groves, D.I., Bierlein, F.P., Meinert, L.D., and Hitzman, M.W., Iron-oxide copper-gold (IOCG) deposits through earth history. Implications for origin, lithospheric setting, and distinction from other epigenetic iron oxide deposits, Econ. Geol., 2010, vol. 105, pp. 641–654.

    Article  Google Scholar 

  • Gurney, J.J., Helmstaedt, H.H., Richardson, S.H., et al., Diamonds through time, Econ. Geol., 2010, vol. 105, pp. 689–712.

    Article  Google Scholar 

  • Hannington, M.D., de Ronde, C.E.J., and Petersen, S., Sea-floor tectonics and submarine hydrothermal systems, Econ. Geol. 100th Anniversary Volume, Hedenquist J.W., Thompson J.F.H., Goldfarb R.J., Eds. Littleton, Colorado: Society of Economic Geologists, 2005, pp. 111–141.

  • Hansen, V.L., Subduction origin on early earth: a hypothesis, Geology, 2007, vol. 35, pp. 1059–1062.

    Article  Google Scholar 

  • Hawkesworth, C.J., Dhuime, B., Pietranik, A.B., et al., The generation and evolution of the continental crust, J. Geol. Soc. London, 2010, vol. 167, pp. 229–248.

    Article  Google Scholar 

  • Hawkesworth, C., Cawood, P., and Dhuime, B., Continental growth and the crustal record, Tectonophysics, 2013, vol. 609, pp. 651–660.

    Article  Google Scholar 

  • Hitzman, M., Kirkham, R., Broughton, D., et al., The sediment- hosted stratiform copper ore system, Econom. Geol. 100th Anniversary Volume, Hedenquist J.W., Thompson J.F.H., Goldfarb R.J., Eds. Littleton, Colorado: Society of Economic Geologists, 2005, pp. 609–642.

  • Hoffman, P.F., The break-up of Rodinia, birth of Gondwana, true polar wander and the snowball Earth, J. Afr. Earth Sci., 1999, vol. 26, pp. 9–26.

    Google Scholar 

  • Hoskin, P.W.O. and Schaltegge, U., The composition of zircon and igneous and metamorphic petrogenesis, Zircon. Rev. Mineral. Geochem., 2003, vol. 53, pp. 27–62.

    Article  Google Scholar 

  • Van Huenen, J. and Moyen, J.-F., Archean subduction: fact or fiction?, Annu. Rev. Earth Planet. Sci., 2012, vol. 40, pp. 195–219.

    Article  Google Scholar 

  • Ibanez-Mejia, M., Ruiz, J., Valencia, V., et al., The Putumayo orogen of Amazonia and its implications for Rodinia reconstructions: new U-Pb geochronological insights into the Proterozoic tectonic evolution of northwestern South America, Precambrian Res., 2011, vol. 191, pp. 58–77.

    Article  Google Scholar 

  • Johansson, A., Baltica, amazonia and the samba connection—1000 million years of neighbourhood during the proterozoic?, Precambrian Res., 2009, vol. 175, pp. 221–234.

    Article  Google Scholar 

  • Jourdan, F., Marzoli, A., Bertrand, H., et al., 40Ar/39Ar ages of Camp in North America: implications for the Triassic–Jurassic boundary and the 40 K decay constant bias, Lithos, 2009, vol. 110, pp. 167–180.

    Article  Google Scholar 

  • Kaur, P. and Chaudhri, N., Metallogeny associated with the Palaeo-Mesoproterozoic Columbia supercontinent cycle: a synthesis of major metallic deposits, Ore Geol. Rev., 2014, vol. 56, pp. 415–422.

    Article  Google Scholar 

  • Kemp, A.I.S. and Hawkesworth, C.J., Granitic perspectives on the generation and secular evolution of the continental crust, in Treatise in Geochemistry. Vollume 3. The Crust, Rudnick R.L., Ed., Amsterdam: Elsevier, 2003, pp. 349–410.

    Chapter  Google Scholar 

  • Kerrich, R., Goldfarb, R., Groves, D., et al., The geodynamics of world-class gold deposits: characteristics, spacetime distribution, and setting, Rev. Econ. Geol., 2000, vol. 13, pp. 501–551.

    Google Scholar 

  • Kerrich, R., Goldfarb, R.J., and Richards, J., Metallogenic provinces in an evolving geodynamic framework, Econ. Geol. 100th Anniversary Volume, Hedenquist J.W., Thompson J.F.H., Goldfarb R.J., Eds. Littleton, Colorado: Society of Economic Geologists, 2005, pp. 1097–1136.

  • Khain, V.E. and Bozhko, N.A., Istoricheskaya geotektonika. Dokembrii (Historical Geotectonics. Precambrian), Moscow: Nedra, 1988.

    Google Scholar 

  • Kislyakov, Ya.M. and Shchetochkin, V.N., Gidrogennoe rudoobrazovanie (Hydrogenic Ore Formation), Moscow: Geoinformark, 2000.

    Google Scholar 

  • Kogarko, L.N., Alkaline magmatism and enriched mantle reservoirs: mechanisms, time, and depth of formation, Geochem. Int., 2006, vol. 44, no. 1, pp. 3–10.

    Article  Google Scholar 

  • Komiya, T., Material circulation through time–-chemical differentiation within the mantle and secular variation of temperature and composition of the mantle, in Superplumes: Beyond Plate Tectonics, Yuen D.A., Maruyama S., Karato S., Eds., New York: Springer, 2007, pp. 187–234.

    Chapter  Google Scholar 

  • Korenaga, J., Urey ratio and the structure and evolution of Earth’s mantle, Rev. Geophys., 2008a, vol. 46. doi 10.1029/2007RG000241

  • Korenaga, J., Comment on “intermittent” plate “tectonics?” Science, 2008b, vol. 320, p. 1291a.

    Article  Google Scholar 

  • Korenaga, J., Archean geodynamics and the thermal evolution of Earth, Archean Geodynamics and Environments. Geophys. Monogr. Ser., Washington, D.C.: AGU, 2006, vol. 164, pp. 7–32.

    Google Scholar 

  • Korenaga, J., Thermal evolution with a hydrating mantle and the initiation of plate tectonics in the early Earth, J. Geophys. Res., 2011, vol. 116, p. B12403.

    Article  Google Scholar 

  • Kovalenko, V.I., Yarmolyuk, V.V., Andreeva, I.A., et al., Tipy magm i ikh istochniki v istorii Zemli. Ch. 2. Redkometal’nyi magmatizm: assotsiatsii porod, sostav i istochniki magm, geodinamicheskie obstanovki formirovaniya (Types of Magmas and their Sources in the Earth’s History. Part 2. Rare-Metal Magmatism: Rock Associations, Magma Composition and Sources, and Geodynamic Settings Magma), Moscow: IGEM RAN, 2006.

    Google Scholar 

  • Kuleshov, V.N., Margantsevye porody i rudy: geokhimiya izotopov, genezis, evolyutsiya rudogeneza (Manganese Rocks and Ores: Isotope Geochemistry, Genesis, and Ore Genesis), Moscow: Nauchnyi mir, 2013.

    Google Scholar 

  • Labails, C., Olivet, J., Aslanian, D., et al., An alternative early opening scenario for the Central Atlantic Ocean, Earth Planet. Sci. Lett., 2010, vol. 297, pp. 355–368.

    Article  Google Scholar 

  • Labrosse, S. and Jaupart, C., Thermal evolution of the Earth: secular changes and fluctuations of plate characteristics, Earth Planet. Sci. Lett., 2007, vol. 260, pp. 465–481.

    Article  Google Scholar 

  • Larin, A.M., Granity rapakivi i assotsiiruyushchie porody (Rapakivi Granites and Associated Rocks), St. Petersburg: Nauka, 2011.

    Google Scholar 

  • Leach, D.L., Landis, G.P., and Hofstra, A.H., Metamorphic origin of the Coeur d’Alene base- and precious-metal veins in the Belt basin, Idaho and Montana, Geology, 1988, vol. 16, pp. 122–125.

    Article  Google Scholar 

  • Leach, D.L., Bradley, D.C., Huston, D., et al., Sedimenthosted lead-zinc deposits in Earth history, Econ. Geol., 2010, vol. 105, pp. 593–625.

    Article  Google Scholar 

  • Li, Z.X., Bogdanova, S.V., Collins, A.S., et al., Assembly, configuration, and break-up history of Rodinia: a synthesis, Precambrian Res., 2008, vol. 160, pp. 179–210.

    Article  Google Scholar 

  • McCauley, A. and Bradley, D.C., The global age distribution of granitic pegmatites, Can. Mineral., 2014, vol. 52, pp. 183–190.

    Article  Google Scholar 

  • Meert, J.G., What’s in a name? The Columbia (Paleopangaea/Nuna) supercontinent, Gondwana Res., 2012, vol. 21, pp. 987–993.

    Article  Google Scholar 

  • Mosier, D.L., Berger, V.I., and Singer, D.A., Volcanogenic massive sulfide deposits of the world–database and grade and tonnage models, USGeol. Surv., Open-File Rep., 2009. 2009–1034.

    Google Scholar 

  • Nance, R.D., Worsley, T.R., and Moody, J.B., Post- Archean biogeochemical cycles and long-term episodicity in tectonic processes, Geology, 1986, vol. 14, pp. 514–518.

    Article  Google Scholar 

  • Nomade, S., Knight, K.B., Beutel, E., et al., Chronology of the central atlantic magmatic province: implications for the central atlantic rifting processes and the Triassic–Jurassic biotic crisis: Triassic–Jurassic boundary events, problems, progress, possibilities, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2007, vol. 244, pp. 326–344.

    Article  Google Scholar 

  • Pearton, T.N. and Viljoen, M.J., Antimony mineralization in the Murchison greenstone belt–an overview, in Mineral Deposits of Southern Africa, Anhaeusser C.R. and Maske S., Eds, 1986, pp. 293–320.

    Google Scholar 

  • Pehrsson, S., Eglington, B.M., Evans, D.A.D., et al., Metallogeny and its link to orogenic style during the Nuna supercontinent cycle, Spec. Publ.–Geol. Soc. London, 2015, vol. 424. doi 10.1144/SP424.5

  • Petsch, S.T., The global oxygen cycle, in Treatise on Geochemistry. Volume 8. Biogeochemistry, Schlesinger, W.H., Ed., Amsterdam: Elsevier Science, 2003.

    Google Scholar 

  • Phillips, G.N. and Powell, R., Formation of gold deposits: a metamorphic devolatilization model, J. Metamorph. Geol., 2010, vol. 28, pp. 689–718.

    Article  Google Scholar 

  • Pirajno, F., Hydrothermal Processes and Mineral Systems, Berlin: Springer, 2009.

    Book  Google Scholar 

  • Roberts, N.M.W., Increased loss of continental crust during supercontinent amalgamation, Gondwana Res., 2012, vol. 21, pp. 994–1000.

    Article  Google Scholar 

  • Roberts, N.M.W., The boring billion? Lid tectonics, continental growth and environmental change associated with the Columbia supercontinent, Geosci. Front., 2013, vol. 4, pp. 681–691.

    Article  Google Scholar 

  • Rogers, J.J.W. and Santosh, M., Continents and Supercontinents, New York: Oxford University Press, 2004.

    Google Scholar 

  • Rowins, S.M., Groves, D.I., McNaughton, N.J., et al., A reinterpretation of the role of granitoids in the genesis of Neoproterozoic gold mineralization in the Telfer dome, Western Australia, Econ. Geol., 1997, vol. 92, pp. 133–160.

    Article  Google Scholar 

  • Ruchkin, G.V. and Donets, A.I., Stratiformnye svintsovotsinkovye mestorozhdeniya v karbonatnykh tolshchakh (Stratiform Lead–Zinc Deposits in Carbonate Sequences), Moscow: TsNIGRI, 2002.

    Google Scholar 

  • Rudnick, R.L. and Gao, S., Composition of the continental crust, in Treatise in Geochemistry. Volume 3. The Crust, Rudnick, R.L., Ed., Amsterdam: Elsevier, 2003.

  • Rundkvist, D.V., Temporal evolution of ore formation, in Geologicheskoe stroenie SSSR. T. 5. Osnovnye problemy geologii (Geological Structure of the USSR. Volume 5. Main Geologcal Problems), Moscow: Nedra, 1969, pp. 303–332.

    Google Scholar 

  • Rundkvist, D.V., Global metallogeny, in Smirnovskii sbornik-95 (Smirnov’s Collection of Papers-95), Moscow: MGU, 1995, pp. 92–123.

    Google Scholar 

  • Rundkvist, D.V., Tkachev, A.V., Cherkasov, S.V., et al., Database and metallogenic map of large and superlarge world deposits: principles of compilation and preliminary analysis of results, in Krupnye i superkrupnye mestorozhdeniya: zakonomernosti razmeshcheniya i usloviya obrazovaniya (Large and Superlarge Deposits: Distribution and Conditions of Formation), Moscow: IGEM RAN, 2004, pp. 391–422.

    Google Scholar 

  • Rundkvist, D.V., Tkachev, A.V., Cherkasov, S.V., et al., Krupnye i superkrupnye mestorozhdeniya rudnykh poleznykh iskopaemykh. T. 1. Global’nye zakonomernosti razmeshcheniya (Large and Superlarge Ore Deposits. Volume 1. Global Regularities in Localization), Moscow: IGEM RAN, 2006.

    Google Scholar 

  • Santosh, M., Maruyama, S., and Yamamoto, S., The making and breaking of supercontinents: some speculations based on superplumes, superdownwelling and the role of tectosphere, Gondwana Res., 2009, vol. 15, pp. 324–341.

    Article  Google Scholar 

  • Seton, M., Muller, R.D., Zahirovic, S., et al., Global continental and ocean basin reconstructions since 200 Ma, Earth-Sci. Rev., 2012, vol. 113, pp. 212–270.

    Article  Google Scholar 

  • Silver, P.G. and Behn, M.D., Intermittent plate tectonics?, Science, 2008a, vol. 319, pp. 85–88.

    Article  Google Scholar 

  • Silver, P.G. and Behn, M.D., Response to comment on “intermittent” plate “tectonics?”, Science, 2008b, vol. 320, p. 1291.

    Article  Google Scholar 

  • Stampfli, G.M., Hochard, C., Verard, C., et al., The formation of Pangea, Tectonophysics, 2013, vol. 593, pp. 1–19.

    Article  Google Scholar 

  • Tkachev, A.V., Evolution of metallogeny of granitic pegmatites associated with orogens throughout geological time, Spec. Publ.–Geol. Soc. London, 2011a, vol. 350, pp. 7–23.

    Article  Google Scholar 

  • Tkachev, A.V., Metallogenic evolution of granitic pegmatite genesis in the Earth’s evolution: main tendencies and possible reasons, Byull. Mosk. O-va Ispyt. Prir. (MOIP), Ser. Geol., 2011b, vol. 86, no. 1, pp. 41–57.

    Google Scholar 

  • Tkachev, A.V., Bulov, S.V., Rundkvist, D.V., et al., World’s largest mineral deposits. 2014a. http://maps.sgm.ru/MLMDW/. Cited 01.11.2015.

    Google Scholar 

  • Tkachev, A.V., Bulov, S.V., Rundkvist, D.V., et al., World’s largest mineral deposits. 2014b. http://maps.sgm. ru/KKMM/. Cited 01.11.2015.

    Google Scholar 

  • Tkachev, A.V., Bulov, S.V., Rundkvist, D.V., et al., Web- GIS “Worlds’ Largest Deposits”, Geoinformatika, 2015, no. 1, pp. 47–59.

    Google Scholar 

  • Tomkins, A.G., On the source of orogenic gold, Geology, 2013, vol. 41, pp. 1255–1256.

    Article  Google Scholar 

  • Tomson, I.N., Metallogeniya rudnykh raionov (Metallogeny of Ore Districts), Moscow: Nedra, 1988.

    Google Scholar 

  • Torsvik, T.H. and Cocks, L.R.M., Earth geography from 400 to 250 Ma: a palaeomagnetic, faunal and facies review, Spec. Publ.–Geol. Soc. London, 2004, vol. 161, pp. 555–572.

    Article  Google Scholar 

  • Voice, P.J., Kowalewski, M., and Eriksson, K.A., Quantifying the timing and rate of crustal evolution: global compilation of radiometrically dated detrital zircon grains, J. Geol., 2011, vol. 119, pp. 109–126.

    Article  Google Scholar 

  • Wegener, A., The Origin of Continents and Oceans, London: Methuen, 1924.

    Google Scholar 

  • Worsley, T.R., Nance, R.D., and Moody, J.B., Tectonic cycles and the history of the earth biogeochemical and paleoceanographic record, Paleoceanography, 1986, vol. 1, pp. 233–263.

    Article  Google Scholar 

  • Yakubchuk, A., The gyroscopic Earth and its role in supercontinent and metallogenic cycles, Ore Geol. Rev., 2008, vol. 34, pp. 387–398.

    Article  Google Scholar 

  • Yakubchuk, A., Restoring the supercontinent Columbia and tracing its fragments after its breakup: a new configuration and a super-horde hypothesis, J. Geodynamics, 2010, vol. 50, pp. 166–175.

    Article  Google Scholar 

  • Yoshida, M. and Santosh, M., Supercontinents, mantle dynamics and plate tectonics: a perspective based on conceptual vs. numerical models, Earth-Sci Rev., 2011, vol. 105, pp. 1–24.

    Article  Google Scholar 

  • Zhang, N., Zhong, S., and McNamara, A.K., Supercontinent formation from stochastic collision and mantle convection models, Gondwana Res., 2009, vol. 15, pp. 267–275.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Tkachev.

Additional information

Original Russian Text © A.V. Tkachev, D.V. Rundqvist, 2016, published in Geologiya Rudnykh Mestorozhdenii, 2016, Vol. 58, No. 4, pp. 295–318.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tkachev, A.V., Rundqvist, D.V. Global trends in the evolution of metallogenic processes as a reflection of supercontinent cyclicity. Geol. Ore Deposits 58, 263–283 (2016). https://doi.org/10.1134/S1075701516040061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701516040061

Navigation