Skip to main content
Log in

Gold–Silver mineralization in porphyry–epithermal systems of the Baimka trend, western Chukchi Peninsula, Russia

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Mineralogical, fluid inclusion, and geochemical studies of precious metal mineralization within the Baimka trend in the western Chukchi Peninsula have been preformed. Porphyry copper–molybdenum–gold deposits and prospects of the Baimka trend are spatially related to monzonitic rocks of the Early Cretaceous Egdygkych Complex. Four types of precious metal-bearing assemblages have been identified: (1) chalcopyrite + bornite + quartz with high-fineness native gold enclosed in bornite, (2) low-Mn dolomite + quartz + sulfide (chalcopyrite, sphalerite, galena, tennantite-tetrahedrite) ± tourmaline with low-fineness native gold and hessite, (3) rhodochrosite + high-Mn dolomite + quartz + sulfide (chalcopyrite, sphalerite, galena, tennantite- tetrahedrite) with low-fineness native gold, electrum, acanthite, Ag and Au–Ag tellurides, and Ag sulfosalts, and (4) calcite + quartz + sulfide (chalcopyrite, sphalerite, galena) with low-fineness native gold, Ag sulfides and selenides, and Ag-bearing sulfosalts. Study of fluid inclusions from quartz, sphalerite, and fluorite have revealed that hydrothermal ores within the Baimka trend precipitated from fluids with strongly variable salinity at temperatures and pressures ranging from 594 to 104°C and from 1200 to 170 bar, respectively. An indicator of vertical AgPbZn/CuBiMo geochemical zoning is proposed. The value range of this indicator makes it possible to estimate the erosion level of the porphyry–epithermal system. The erosion level of the Baimka deposits and prospects deepens in the following order: Vesenny deposit → Pryamoi prospect → Nakhodka prospect → Peschanka deposit → III Vesenny prospect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad, S.N. and Rose, A.W., Fluid inclusions in porphyry and skarn ore at Santa Rita, New Mexico, Econ. Geol., 1980, vol. 75, pp. 229–250.

    Article  Google Scholar 

  • Baksheev, I.A., Nikolaev, Yu.N., Prokof’ev, V.Yu., et al., Gold–molybdenum–copper porphyry–epthermal system of the Baim ore zone, Western Chukotka, in Metallogeniya drevnikh i sovremennykh okeanov-2014. Dvadtsat’ let na peredovykh rubezhakh geologii mestorozhdenii poleznykh iskopaemykh (Metallogeny of Ancient and Modern Oceans-2014. Twenty Years on Frontiers of Geology of Mineral Deposits), Miass: In-t mineralogii UrO RAN, 2014, pp. 108–112.

    Google Scholar 

  • Bodnar, R.J. and Vityk, M.O., Interpretation of microthermometric data for H2O–NaCl fluid inclusions, in Fluid Inclusions in Minerals: Methods and Applications, Pontignano: Siena, 1994, pp. 117–130.

    Google Scholar 

  • Bogdanov, K., Filipov, A., and Kehayov, R., Au-Ag-Te-Se minerals in the Elatsite porphyry–copper deposit, Bulgaria, Bulg. Acad. Scie. Geochem., Mineral., Petrol, 2005, vol. 43, pp. 13–19.

    Google Scholar 

  • Bonev, I.K., Kerestedjian, T., Atanassova, R., and Andrew, C.J., Morphogenesis and composition of native gold in the Chelopech volcanic-hosted Au-Cu epithermal deposit, Srednogorie, Bulgaria, Miner. Deposita, 2002, vol. 37, pp. 614–629.

    Article  Google Scholar 

  • Borisenko, A.S., Cryometric study of salt composition of fluid inclusions in minerals, Geol. Geofiz., 1977, no. 8, pp. 16–27.

    Google Scholar 

  • Borovikov, V.P., Populyarnoe vvedenie v sovremennyi analiz dannykh v sisteme STATISTICA. Uchebnoe posobie dlya vuzov (Popular Introduction in the Modern Analysis of data in the STATISTICA System. Tutorial for Higher School), Moscow: Goryachaya liniya - Telekom, 2013.

    Google Scholar 

  • Brown, P., Flincor: a computer program for the reduction and investigation of fluid inclusion data, Am. Mineral., 1989, vol. 74, pp. 1390–1393.

    Google Scholar 

  • Carrillo-Rosua, J., Morales-Ruano, S., Morato, D., et al., Mineralogy and geochemistry of El Dorado epithermal gold deposit, El Sauce district, central-northern Chile, Mineral. Petrol., 2008, vol. 92, pp. 341–360.

    Article  Google Scholar 

  • Chitalin, A.F., Usenko, V.V., and Fomichev, E.V., Baim ore zone–a cluster of large deposits of non-ferrous and precious metals on the western Chukotka, Mineral. Res. Rossii. Ekonomika i upravlenie, 2013, no. 6, pp. 68–73.

    Google Scholar 

  • Chvileva, T.N., Bezsmertnaya, M.S., Spiridonov, E.M., et al., Spravochnik-opredelitel' rudnykh mineralov v otrazhennom svete (Handbook for Determination of Ore Minerals in Reflected Light), Moscow: Nedra, 1988.

    Google Scholar 

  • Corbett, G.J. and Leach, T.M., Southwest Pacific rim goldcopper systems: structure, alteration and mineralization, Econ. Geol. Spec. Publ., 1998, vol. 6, p. 238.

    Google Scholar 

  • Eastoe, C.J., A fluid inclusion study of the Pananguna porphyry copper deposit, Bougainville, Papua New Guinea, Econ. Geol., 1978, vol. 73, pp. 721–748.

    Article  Google Scholar 

  • Kalyuzhnyi, V.A., Osnovy ucheniya o mineraloobrazuyushchikh flyuidakh (Principles of the Theory on Mineral-Forming Fluids), Kiev: Naukova dumka, 1982.

    Google Scholar 

  • Klemm, L.M., Pettke, T., and Heinrich, C.A., Hydrothermal evolution of the El Teniente deposit, Chile: porphyry Cu-Mo ore deposition from low-salinity magmatic fluids, Econ. Geol., 2007, vol. 102, pp. 1021–1045.

    Article  Google Scholar 

  • Kotova, M.S., Nagornaya, E.V., Anosova, M.O., et al., Dating of metasomatic process and ore-bearing granitoids of copper-porphyry deposits of the Nakhodka ore field (Western Chukotka), in Geokhronometricheskie izotopnye sistemy, metody ikh izucheniya, khronologiya geologicheskikh protsessov: Mater V Rossiiskoi konf. po izotopnoi geokhronologii (Geochronometric Isotope Systems, Methods of their Study, and Chronology of Geological Processes. Proceedings of 5th Russian Conference on Isotooe Geochronology), Moscow: IGEM, 2012, pp. 181–184.

    Google Scholar 

  • Kovalenker, V.A., Plotinskaya, O.Yu., Stanley, C.J., et al., Kurilite–Ag8Te3Se–a new mineral from the Prasolovskoe deposit, Kuril islands, Russian Federation, Mineral. Mag., 2010, vol. 74, pp. 463–468.

    Article  Google Scholar 

  • Kryazhev, S.G., Prokof’ev, V.Yu., and Vasyuta, Yu.V., Application of ICP-MS method for analysis of ore-forming fluids, Vestn. Mosk. Univ., Ser. 4: Geol., 2006, no. 4, pp. 30–36.

    Google Scholar 

  • LeFort, D., Hanley, J., and Guillong, M., Subepithermal Au-Pd mineralization associated with an alkalic porphyry Cu-Au deposit, Mount Milligan, Quesnel terrane, British Columbia, Canada, Econ. Geol., 2011, vol. 106, pp. 781–808.

    Article  Google Scholar 

  • Lowell, J.D. and Guilbert, J.M., Lateral and vertical alteration- mineralization zoning in porphyry ore deposits, Econ. Geol., 1970, vol. 65, pp. 373–408.

    Article  Google Scholar 

  • Moll-Stalcup, E.J., Krogh, T.E., Kamo, S, et al., Geochemistry and U-Pb-geochronology of arc related magmatic rocks, northeastern Russia, Abstracts with programs GSA, 1995, vol. 27, no. 5, p. 65.

    Google Scholar 

  • Nagornaya, E.V., Mineralogiya i zonal’nost' molibdenmedno- porfirovogo rudnogo polya Nakhodka, Chukotka. Avtoref, Cand. Sci. (Geolmin) Dissertation, Moscow, 2013.

    Google Scholar 

  • Nash, J.T., Fluid-inclusion petrology, Data from Porphyry Copper Deposits and Applications to Explorations, Washington: US Government Printing Office, 1976.

    Google Scholar 

  • Pasava, J., Vymazlova, A., Kosler, J., et al., Platinum-group elements in ores from the kalmakyr porphyry Cu–Au–Mo deposit, Uzbekistan: bulk geochemical and laser ablation ICP-MS data, Miner. Deposita, 2010, vol. 45, pp. 411–418.

    Article  Google Scholar 

  • Prokof’ev, V.Yu., Types of hydrothermal ore-forming systems (from fluid inclusion studies), Geol. Ore Deposits, 1998, vol. 40, no. 6, pp. 457–470.

    Google Scholar 

  • Roedder, E., Fluid Inclusions in Rev. Mineral., 1984,vol. 12.

  • Roedder, E., Fluid inclusion studies on the porphyry-type ore deposits at Bingham, Utah, Butte, Montana, and Climax, Colorado, Econ. Geol., 1971, vol. 66, pp. 98–120.

    Article  Google Scholar 

  • Shapovalov, V.S., Signs of a single OMS by the example of complex formational mineralization, Western Kamchatka, in Problemy rudno-formatsionnogo analiza i poiskovoi mineralogii na severo-vostoke Rossii (Problems of the Ore Formation Analysis and Prospecting Mineralogy in Northeast Russia), Magadan: SVKNII DVO RAN, 1994, pp. 73–82.

    Google Scholar 

  • Shavkunov, B.N., Application of geophysical and geochemical data for outlining ore fields within the Baim gold cluster, in Geokhimicheskie metody poiskov mestorozhdenii zolota po vtorichnym oreolam rasseyaniya (Geochemical Exploration for Gold Deposits from Secondary Dispersal Halo), Zabaikal. Fil. Geograf. O-va SSSR, 1973, vol. 88, pp. 112–114.

    Google Scholar 

  • Sillitoe, R.H. and Hedenquist, J.W., Linkages between volcanotectonic settings, ore-fluid compositions, and epithermal precious metal deposits, Soc. Econ. Geol. Spec. Publ., 2003, vol. 10, pp. 315–343.

    Google Scholar 

  • Sillitoe, R.H., Porphyry copper systems, Econ. Geol., 2010, vol. 105, pp. 3–41.

    Article  Google Scholar 

  • Simmons, F.A., White, N.C., and John, D.A., Geological characteristics of epithermal precious and base metal deposits, Econ. Geol. 100th Anniversary Vol. 2005. Soc. Econ. Geol., Inc. pp. 485–522.

  • Solovov, A.P., Arkhipov, A.Ya., Bugrov, V.A., et al., Spravochnik po geokhimicheskim poiskam poleznykh iskopaemykh (Guidebook on Geochemical Exploration of Mineral Resources), Moscow: Nedra, 1990.

    Google Scholar 

  • Tarkian, M. and Koopman, G., Platinum-group minerals in the Santo Nomas II (Philex) porphyry copper-gold deposit, Luzon Island, Philippines, Miner. Deposita, 1995, vol. 30, pp. 39–47.

    Article  Google Scholar 

  • Tarkian, M., Hunken, U., Tokmachieva, M., and Bogdanov, K., Precious-metal distribution and fluid-inclusion petrography of the elatsite porphyry copper deposit, bulgaria, Miner. Deposita, 2003, vol. 38, pp. 261–281.

    Google Scholar 

  • Volkov, A.V., Savva, N.E., Sidorov, A.A., et al., Spatial distribution and formation conditions of Au-bearing porphyry Cu–Mo deposits in the Northeast of Russia, Geol. Ore Deposits, 2006, vol. 48, no. 6, pp. 448–472.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Prokofiev.

Additional information

Original Russian Text © Yu.N. Nikolaev, I.A. Baksheev, V.Yu. Prokofiev, E.V. Nagornaya, L.I. Marushchenko, Yu.N. Sidorina, A.F. Chitalin, I.A. Kal’ko, 2016, published in Geologiya Rudnykh Mestorozhdenii, 2016, Vol. 58, No. 4, pp. 319–345.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolaev, Y.N., Baksheev, I.A., Prokofiev, V.Y. et al. Gold–Silver mineralization in porphyry–epithermal systems of the Baimka trend, western Chukchi Peninsula, Russia. Geol. Ore Deposits 58, 284–307 (2016). https://doi.org/10.1134/S107570151604005X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107570151604005X

Navigation