Advertisement

Geology of Ore Deposits

, Volume 58, Issue 2, pp 134–148 | Cite as

Composition and genesis of the Konevinsky gold deposit, Eastern Sayan, Russia

  • B. B. DamdinovEmail author
  • S. M. Zhmodik
  • P. A. Roshchektaev
  • L. B. Damdinova
Article

Abstract

The Konevinsky gold deposit in southeast Eastern Sayan is distinguished from most known deposits in this region (Zun-Kholba, etc.) by the geological setting and composition of mineralization. To elucidate the cause of the peculiar mineralization, we have studied the composition, formation conditions, and origin of this deposit, which is related to the Ordovician granitoid pluton 445–441 Ma in age cut by intermediate and basic dikes spatially associated with metavolcanic rocks of the Devonian–Carboniferous Ilei Sequence. Four mineral assemblages are recognized: (1) quartz–pyrite–molybdenite, (2) quartz–gold–pyrite, (3) gold–polysulfide, and (4) telluride. Certain indications show that the ore was formed as a result of the superposition of two distinct mineral assemblages differing in age. The first stage dated at ~440 Ma is related to intrusions generating Cu–Mo–Au porphyry mineralization and gold–polysulfide veins. The second stage is controlled by dikes pertaining to the Devonian–Carboniferous volcanic–plutonic association. The second stage is characterized by gain of Hg and Te and formation of gold–mercury–telluride paragenesis.

Keywords

Pyrite Fluid Inclusion Chalcopyrite Gold Deposit Mineral Assemblage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Airiyants, E.V., Zhmodik, S.M., Mironov, A.G., et al., Gold mineralization in siliceous–carbonate rocks of southeastern East Sayan, Russ. Geol. Geophys., 2007, vol. 48, no. 5, pp. 389–399.CrossRefGoogle Scholar
  2. Borisenko, A.S., Naumov, E.A., and Obolenskii, A.A., Types of gold–mercury deposits and their formaton conditions, Russ. Geol. Geophys., 2006, vol. 47, no. 3, pp. 342–354.Google Scholar
  3. Bortnikov, N.S., Cramer, Kh., Genkin, A.D., et al., Parageneses of gold and silver tellurides in the Florence gold deposit, Cuba Republic, Geol. Rudn. Mestorozhd., 1988, no. 2, pp. 49–61.Google Scholar
  4. Brown, P.E., FLINCOR: a microcomputer program for the reduction and investigation of fluid-inclusion data, Am. Mineral., 1989, vol. 74, pp. 1390–1393.Google Scholar
  5. Damdinov, B.B., Zhmodik, S.M., Mironov, A.G., et al., Noble metal mineralization in rodingites of the southeastern East Sayan, Russ. Geol. Geophys., 2004, vol. 45, no. 5, pp. 536–546.Google Scholar
  6. Damdinov, B.B., Mironov, A.G., Borisenko, A.S., et al., Composition and conditions of formation of gold–telluride mineralization in the Tissa–Sarkhoi gold-bearing province (East Sayan), Russ. Geol. Geophys., 2007, vol. 48, no. 8, pp. 643–655.CrossRefGoogle Scholar
  7. Damdinov, B.B., Roshchektaev, P.A., Zhmodik, S.M., et al., Au–Ag–Hg intermetallides in the ores of the Konevinsk gold deposits, Eastern Sayan, Zapiski Ross. Mineral. O-va, 2012, no. 3, pp. 50–60.Google Scholar
  8. Fedotova, A.A. and Khain, E.V., Tektonika yuga Vostochnogo Sayana i ego polozhenie v Uralo-Mongol’skom poyase (Tectonics of the Southern East Sayan and its Position in the Ural–Mongolian Belt), Moscow: Nauchnyi mir, 2002.Google Scholar
  9. Gamyanin, G.N., Goryachev, N.A., Bakharev, A.G., et al., Usloviya zarozhdeniya i evolyutsiya granitoidnykh zolotorudno-magmaticheskikh sistem v mezozoidakh Severo-Vostoka Azii (Conditions of Initiation and Evolution of the Granitoid Gold Magmatic Systems in the Mesozoides of Northeastern Asia), Magadan: SVKNII DVO RAN, 2003.Google Scholar
  10. Garmaev, B.L., Damdinov, B.B., and Mironov, A.G., Pogranichnoe Au–Bi occurrence, Eastern Sayan: composition and link to magmatism, Geol. Ore Deposits, 2013, vol. 55, no. 6, pp. 455–466.CrossRefGoogle Scholar
  11. Goryachev, N.A. and Gamyanin, G.N., Gold–bismuth (gold–rare metal) deposits of northeastern Russia: types and prospects of economic exploration, in Zolotorudnye mestorozhdeniya Vostoka Rossii: Tr. 3-go Vseross. Simp. “Zoloto Sibiri i Dal’nego Vostoka: geologiya, geokhimiya, tekhnologiya, ekonomika, ekologiya” (Gold Deposits of East Russia. Proceedings of the 3rd All-Russian Symposium on Gold of Siberia and Far East: Geology, Geochemistry, Technology, Economics, and Ecology), Magadan: SVKNII, 2006, pp. 50–62.Google Scholar
  12. Grabezhev, A.I., Sr–Nd–C–O–H–S isotope-geochemical characteristics of copper–porphyry fluid-magmatic systems of the South Urals: possible sources of matter, Litosfera, 2009, no. 6, pp. 66–89.Google Scholar
  13. Hedenquist, J.W., Arribas, A.R., and Eliseo, G.-U., Exploration for epithermal gold deposits, SEG Rev., 2000, vol. 13, pp. 245–277.Google Scholar
  14. Kerrich, R. and Wyman, D.A., Review of development in trace-element fingerprinting of geodynamic settings and their implications for mineral exploration, Austral. J.Earth Sci., 1997, vol. 44, pp. 465–487.CrossRefGoogle Scholar
  15. Konstantinov, M.M., Zolotoe i serebryanoe orudenenie vulkanogennykh poyasov mira (Gold and Silver Mineralization in the Volcanogenic Belts of the World), Moscow: Nedra, 1984.Google Scholar
  16. Kovalenker, V.A., Borisenko, A.S., Prokof’ev, V.Yu., et al., Gold porphyry epithermal ore-forming systems: ore mineralogy, fluid regime, factors of large-scale gold accumulation, in Aktual’nye problemy rudoobrazovaniya i metallogenii (Urgent Problems of Ore Formation and Metallogeny), Novosibirsk: Akad. izd-vo “Geo”, 2006, pp. 103–104.Google Scholar
  17. Kovalenker, V.A., Kiseleva, G.D., Krylova, T.L., et al., Mineralogy and ore formation conditions of the Bugdaya Au-bearing W–Mo porphyry deposit, Eastern Transbaikal region, Russia, Geol. Ore Deposits, 2011, vol. 53, no. 2, pp. 93–125.CrossRefGoogle Scholar
  18. Krivtsov, A.I., Migachev, I.F., and Popov, V.S., Medno-porfirovye mestorozhdeniya mira (Porphyry Copper Deposits of the World), Moscow: Nedra, 1986.Google Scholar
  19. Krylova, V.V., Sandomirskaya, S.M., and Chuvikina, N.G., Tin, lead, and intermetallic compounds in the ores of the gold–silver deposits, in Mineralogicheskie issledovaniya mestorozhdenii tsvetnykh i blagorodnykh metallov (Mineralogical Studies of the Non-Ferrous and Noble Metals), Moscow: Nedra, 1979, pp. 22–27.Google Scholar
  20. Lang, J.R. and Baker, T., Intrusion-related gold systems: the present level of understanding, Miner. Deposita, 2001, no. 36, pp. 477–489.CrossRefGoogle Scholar
  21. Leistel, J.M., Marcoux, E., Deschamps, Y., and Joubert, M., Antithetic behaviour of gold in the volcanogenic massive sulphide deposits of the Iberian pyrite belt, Miner. Deposita, 1998, vol. 33, nos. 1–2, pp. 82–97.Google Scholar
  22. Lindgren, W., Mineral Deposits, New York: McGraw-Hill, 1933.Google Scholar
  23. Mironov, A.G. and Zhmodik, S.M., Gold deposits of the Urik–Kitoi metallogenic zone (Eastern Sayan, Russia), Geol. Ore Deposits, 1999, vol. 41, no. 1, pp. 46–61.Google Scholar
  24. Mironov, A.G., Zhmodik, S.M., Ochirov, Yu.Ch., et al., The Tainskoe gold deposit (Eastern Sayan, Russia)—a new example of the porphyry gold type, Geol. Ore Deposits, 2001, vol. 43, no. 5, pp. 353–370.Google Scholar
  25. Mironov, A.G., Zhmodik, S.M., Borovikov, A.A., et al., The Kamennoe gold sulfide deposit (Northern Transbaikalia, Russia) as a representative of the Riphean epithermal gold–telluride–silver ore mineralization, Geol. Ore Deposits, 2004, vol. 46, no. 5, pp. 353–371.Google Scholar
  26. Moëlo Y., Makovicky, E. Mozgova, N.N., et al., Sulfosalt systematics: a review. Report of the sulfosalt sub-committee of the IMA Comission on ore mineralogy, Eur. J. Mineral., 2008, vol. 20, pp. 7–46.CrossRefGoogle Scholar
  27. Mozgova, N.N. and Tsepin, A.I., Bleklye rudy (osobennosti khimicheskogo sostava i svoistv) (Fahlore: Chemical Composition and Properties), Moscow: Nauka, 1983.Google Scholar
  28. Murzin, V.V., Pokrovskii, P.V., and Moloshag, V.P., Mercury in native gold of the Urals and its typomorphic significance, Geol. Rudn. Mestorozhd., 1981, no. 4, pp. 86–91.Google Scholar
  29. Murzin, V.V. and Malyugin, A.A., Tipomorfizm zolota zony gipergeneza (na primere Urala) (Typomorphism of Gold in Supergene Zone), Sverdlovsk: UNTs ANSSSR, 1987.Google Scholar
  30. Naz’mova, G.N. and Spiridonov, E.M., Mercuric gold, Dokl. Akad. Nauk SSSR, 1979, vol. 26, no. 3, pp. 702–705.Google Scholar
  31. Nisten, P., Gold in the volcanogenic mercury-rich sulfide deposit Langsele, Skellefte ore district, northern Sweden, Miner. Deposita, 1986, no. 21, pp. 116–120.Google Scholar
  32. Ozerova, N.A., Rtut’ i endogennoe rudoobrazovanie (Mercury and Endogenic Ore Formation), Moscow: Nauka, 1986.Google Scholar
  33. Pearce, J.A., Harris, N.B.W., and Tindle, A.G., Trace element discrimination diagrams for the tectonic interpretation of granitic rocks, J. Petrol., 1984, vol. 25, no. 4, pp. 956–983.CrossRefGoogle Scholar
  34. Pokrovskii, P.V., Berzon, R.O., Murzin, V.V., et al., Mercury-bearing native gold in some deposits of the Urals, in Ezhegodnik In-ta geologii i geokhimii UNTs ANSSSR, 1976 (Yearbook of the Institute of Geology and Geochemistry of the Ural Scientific Center, ANSSSR), Sverdlovsk, 1977, pp. 79–81.Google Scholar
  35. Sillitoe, R.H., Enargite-bearing massive sulfide deposits high in porphyry copper systems, Econ. Geol., 1983, vol. 78, pp. 348–352.CrossRefGoogle Scholar
  36. Sillitoe, R.H., Porphyry copper systems, Econ. Geol., 2010, vol. 105, pp. 3–41.CrossRefGoogle Scholar
  37. Stepanov, V.A. and Moiseenko, V.G., Geologiya zolota, serebra i rtuti. Ch. 1. Zoloto-rtutnye mestorozhdeniya (Geology of Gold, Silver, and Mercury. Part 1. Gold–Mercury Deposits), Vladivostok: Dal’nauka, 1993.Google Scholar
  38. Tauson, L.V., Geokhimicheskie tipy i potentsial’naya rudonosnost' granitoidov (Geochemical Types and Ore Potential of Granitoids), Moscow: Nauka, 1977.Google Scholar
  39. Travin, A.V., Yudin, D.S., Vladimirov, A.G., et al., Thermochronology of the Chernorud granulite zone, Ol’khon region, Western Baikal area, Geochem. Int., 2009, vol. 11, pp. 1107–1124.CrossRefGoogle Scholar
  40. Zhmodik, S.M., Mironov, A.G., Bobrik, O.M., et al., Two types of the porphyry gold systems of Estern Sayan, in Zolotorudnye mestorozhdeniya Vostoka Rossii: Tr. 3-go Vseross. Simp. Zoloto Sibiri i Dal’nego Vostoka: geologiya, geokhimiya, tekhnologiya, ekonomika, ekologiya, Ulan-Ude, 2004. (Gold Deposits of East Russia. Proceedings of the 3rd All-Russian Symposium on Gold of Siberia and Far East: Geology, Geochemistry, Technology, Economics, and Ecology), Magadan: SVKNII DVO RAS, 2006, pp. 74–87.Google Scholar
  41. Zhmodik, S.M., Mironov, A.G., and Zhmodik, A.S., Zolotokontsentriruyushchie sistemy ofiolitovykh poyasov (na primere Sayano-Baikalo-Muiskogo poyasa) (Gold-Concentrating Systems of Ophiolite Belts: Evidence from the Sayan–Baikal–Muya Belt), Novosibirsk: Akademicheskoe izd-vo “Geo”, 2008.Google Scholar
  42. Roshchektaev, P. A., Mironov, A. G., Doroshkevich, G. I. et al., Zoloto Buryatii. Kn. 1. Strukturno-metallogenicheskoe raionirovanie, geologicheskoe stroenie mestorozhdenii, resursnaya otsenka (Gold of Buryatia. Vol. 1. Structural–Metallogenic Zoning, Geological Structure of the Deposits, and Resource Assessment), Ulan-Ude: BNTs SORAN, 2000.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • B. B. Damdinov
    • 1
    Email author
  • S. M. Zhmodik
    • 2
  • P. A. Roshchektaev
    • 3
  • L. B. Damdinova
    • 1
  1. 1.Geological Institute, Siberian BranchRussian Academy of SciencesUlan-UdeRussia
  2. 2.Institute of Geology and Mineralogy, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  3. 3.Rifei OOOUlan-UdeRussia

Personalised recommendations