Advertisement

Geology of Ore Deposits

, Volume 58, Issue 1, pp 58–81 | Cite as

Magmatogene fluids of metal-bearing reefs in the Bushveld Complex, South Africa: Based on research data on fluid inclusions in quartz

  • L. M. Zhitova
  • J. A. Kinnaird
  • M. P. Gora
  • E. P. Shevko
Article

Abstract

Fluid inclusions in the Merensky Reef quartz and later pegmatite veins crosscutting the Platreef rocks of the Bushveld Complex are studied by a suite of advanced high-precision methods. Based on the conducted studies, we identify a few types of fluids, some having been separated during the crystallization of volatile matter-rich residual melt of original basic magma, while others are derivatives of later felsic (granite) melts that formed crosscutting veins in fully devitrified ultrabasic and basic rocks. The earliest fluid is captured by quartz in symplectitic intergrowths with intercumulus plagioclase from the Merensky Reef pyroxenite occurs as a homogenous dense dry reduced gas (CH4–N2 ± CO2) mixture separated from the aluminosilicate melt at 800–900°C and 3050 bar. The following heterophase highly concentrated fluids (60–80 wt % NaCl eq.) separated at over 550°C and below 3050 bar transport a large number of metals. Major saline components of such fluids included Na, K, Fe, Ca, and Mn chlorides, Ca and Na sulphates and carbonates. According to LA ICP-MS analysis data, inclusions of these fluids contain high concentrations of Fe, Cr, K, and Na at the level of a few wt % and also significant contents of Cu, Sn, Sb, Mo, Au, Ag, Bi, and Ni in a concentration range from a few to thousands of ppm. Relatively lower-temperature (much higher than 450°C) fluids accompanying the crystallization of crosscutting quartz–feldspar pegmatite veins at the Platreef are also highly concentrated (from 70–80% to 40–14 wt % NaCl eq.), oxidized and metal-bearing. High concentrations of metals such as Na, K, Ca, Mn, Fe, and Pb at the level of wt % and also Ni, Co, Cu, As, Mo, Sn, Sb, and Bi (1–500 ppm) in inclusions in quartz of later pegmatite veins suggest the possible participation of magmatogene fluids related to later felsic intrusions in the redistribution of primary magmatic concentrations of metals. The oxidation of reduced heterophase fluids may be the most important geochemical barrier invoking the crystallization of solid mineral phases from heterophase fluids.

Keywords

Fluid Inclusion Platinum Group Element Bushveld Complex Fluid Inclusion Study Pegmatite Vein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armitage, P.E.B., McDonald, I., Edwards, S.J., et al., Platinum-group element mineralization in the Platreef and calc-silicate footwall at Sandsloot, Potgietersrus District, South Africa, Trans. Inst. Min. Metall., Appl. Earth Sc, 2002, vol. 111, pp. B36–B45.CrossRefGoogle Scholar
  2. Arndt, N., Jenner, G., Ohnenstetter, M., et al., Trace elements in the Merensky Reef and adjacent norites of the Bushveld Complex, South Africa, Miner. Deposita, 2005, vol. 40, pp. 550–575.CrossRefGoogle Scholar
  3. Audétat, A., Günther, D., and Heirich, C.A., Magmatichydrothermal evolution in a fractionating granite: a microchemical study of the Sn–W–F-mineralized Mole granite (Australia), Geochim. Cosmochim. Acta, 2000, vol. 64, no. 19, p. 3373.CrossRefGoogle Scholar
  4. Audétat, A. and Pettke, T. The magmatic–hydrothermal evolution of two barren granites: a melt and fluid inclusion study of the Rito del Medio and Canada Pinabete plutons in northern New Mexico (USA), Geochim. Cosmochim. Acta, 2003, vol. 67, pp. 97–121.CrossRefGoogle Scholar
  5. Ballhaus, C.G. and Stumpfl, E.F., Sulfide and platinum mineralization in the Merensky Reef: evidence from hydrous silicates and fluid inclusions, Contrib. Mineral. Petrol., 1986, vol. 94, pp. 193–204.CrossRefGoogle Scholar
  6. Ballhaus, C.G., Ryan, C.G., Mernagh, T.P., et al., The partitioning of Fe, Ni, Cu, Pt, and Au between sulphide, metal, and fluid phases: a pilot study, Geochim. Cosmochim. Acta, 1994, vol. 58, pp. 811–826.CrossRefGoogle Scholar
  7. Ballhaus, C.G. and Sylvester, P., Noble metal enrichment processes in the Merensky Reef, Bushveld Complex, J. Petrol., 2000, vol. 41, no. 4, pp. 545–561.CrossRefGoogle Scholar
  8. Barkov, A.Y., Martin, R.F., Kaukonen, R.J., et al., The occurrence of Pb–Cl–(OH) and Pt–Sn–S compounds in the Merensky reef, Bushveld layered complex, South Africa, Can. Mineral., 2001, vol. 39, no. 5, pp. 1397–1403.CrossRefGoogle Scholar
  9. Barnes, S.-J. and Maier, W.D., Platinum-group elements and microstructures of normal Merensky Reef from Impala platinum mines, Bushveld Complex, J. Petrol., 2002, vol. 43, no. 1, pp. 103–128.CrossRefGoogle Scholar
  10. Bezmen, N.I., Gorbachev, P.N., Azif, M., et al., Palladium solubility in water-bearing silicate melts: evidence from experimental data, Dokl. Earth Sci., 2006, vol. 406, no. 1, pp. 65–68.CrossRefGoogle Scholar
  11. Borisenko, A.S., Analysis of salt composition of solutions of gas–liquid inclusions in minerals by cryomteric method, in Ispol’zovanie metodov termobarogeokhimii pri poiskakh i izuchenii rudnykh mestorozhdenii (Application of Thermobarogeochemical Methods in Studying Ore Deposits), Moscow, 1982, pp. 37–47.Google Scholar
  12. Borisenko, A.S., Borovikov, A.A., and Reif, F.G., Analysis of fluid inclusions using modern techniques and problems of data interpretation. metallogeny of the pacific northwest: tectonics, magmatism and metallogeny of active continental margins, Proceedings of the Interim IAGOD Conference, Vladivostok, 2004, pp. 281–283.Google Scholar
  13. Borisenko, A.S., Borovikov, A.A., Zhitova, L.M., et al., Composition of magmatogene fluids and factors of their geochemical specialization and metal-bearing capacity, Russ. Geol. Geophys., 2006, vol. 47, no. 12, pp. 1282–1300.Google Scholar
  14. Borovikov, A.A., Bul’bak, T.A., Borisenko, A.S., Ragozin, A.L., and Palesskii, S.V., The behavior of ore elements in oxidized heterophase chloride and carbonate–chloride–sulfate fluids of porphyry Cu–Mo(Au) deposits (from experimental data), Russ. Geol. Geophys., 2015, vol. 56, no. 3, pp. 435–445.CrossRefGoogle Scholar
  15. Campbell, I.H., A fluid dynamic model for the potholes of the Merensky Reef, Econ. Geol., 1986, vol. 81, pp. 1118–1125.CrossRefGoogle Scholar
  16. Carr, H.W., Groves, D.I., Kruger, F.J., et al., Petrogenesis of Merensky Reef potholes at the western platinum mines: Srisotopic evidence for synmagmatic deformation, Miner. Deposita, 1999, vol. 34, pp. 335–347.CrossRefGoogle Scholar
  17. Cawthorn, R.G., Platinum-group element mineralization in the Bushveld Complex—a critical reassessment of geochemical models, S. Afr. J. Geol., 1999, vol. 102, pp. 268–281.Google Scholar
  18. Cawthorn, R.G. and Webb, S.J., Connectivity between the western and eastern limbs of the Bushveld Complex, Tectonophysics, 2001, vol. 330, pp. 195–209.CrossRefGoogle Scholar
  19. Cawthorn, R.G., Merkle, R.K., and Viljoen, M.J., Platinum-group element deposits in the Bushveld Complex, South Africa, The geology, geochemistry, mineralogy and mineral benefication of platinum-group elements, Cabri, L.J., Ed., Ottawa, Ontario: Can. Inst. Min. Met. Spec, 2002, vol. 54, pp. 389–429.Google Scholar
  20. Danyushevsky, L., Robinson, P., Gilbert, S., Large, R., McGoldrick, P., Norman, M., and Shelley, M., Routine quantitative multi-element analysis of sulphide minerals by laser ablation ICP-MS: standard development and consideration of matrix effects, Geochem.: Explor., Environ., Anal., 2011, vol. 11, pp. 51–60.Google Scholar
  21. Davidson, P. and Kamenetsky, V.S., Primary aqueous fluids in rhyolitic magmas: melt inclusion evidence for preand post-trapping exsolution, Chem. Geol., 2007, vol. 237, nos. 3–4, pp. 372–383.CrossRefGoogle Scholar
  22. Distler, V.V., Yudovskaya, M.A., Prokof’ev, V.Yu., Sluzhenikin, S.F., Mokhov, A.V., and Mun, Ya.V., Hydrothermal platinum mineralization of the Waterberg deposit (Transvaal, South Africa), Geol. Ore Deposits, 2000, vol. 42, no. 4, pp. 328–339.Google Scholar
  23. Eriksson, P.G., Altermann, W., Catuneanu, O., et al., Major influence on the evolution of the 2.67-2.1 Ga Transvaal Basin, Kaapvaal craton, Sediment. Geol., 2001, vol. 141–142, pp. 205–231.CrossRefGoogle Scholar
  24. Evstigneeva, T. and Tarkian, M., Synthesis of platinumgroup minerals under hydrothermal conditions, Eur. J. Mineral., 1996, vol. 8, pp. 549–564.CrossRefGoogle Scholar
  25. Evstigneeva, T.L. and Trubkin, N.V., Peculiarities of PGE phases synthesized under hydrothermal conditions, Proceedings of 10th International Platinum Symposium, Oulu: 2005, pp. 70–73.Google Scholar
  26. Godovikov, A.A., Mineralogiya (Mineralogy), Moscow: Nedra, 1983.Google Scholar
  27. Gunther, D., Frischknecht, R., Heinrich, C.A., and Kahlert, H.J., Capabilities of an Argon Fluoride, 2005 p. 193.Google Scholar
  28. Günther, D., Audétat, A., Frischknecht, R., and Heinrich, C.A., Quantitative analysis of major, minor and trace elements in fluid inclusions using laser ablation inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom., 1998, vol. 13, no. 4, pp. 263–270.CrossRefGoogle Scholar
  29. Hanley, J.J., Pettke, T., Mungall, J.E., et al., Base and precious metal-bearing fluid inclusions of magmatic origin in the ultramafic series, Stillwater complex, Montana, Abstracts of Geoscience Africa, Johannesburg, 2004, vol. 1, p. 252.Google Scholar
  30. Hanley, J.J., Mungall, J.E., and Spooner, E.T.C., Fluid and melt inclusion evidence for platinum-group element transport by high salinity fluids and halide melts below the J-M Reef, Stillwater Complex, Montana, U.S.A, Extended abstracts of the 10th International Platinum Symposium, Oulu, Finland, 2005, pp. 94–97.Google Scholar
  31. Heinrich, C.A., Pettke, T., Halter, W.E., Aigner-Torres, M., Audétat, A., Günther, D., Hattendorf, B., Bleiner, D., Guillong, M., and Horn, I. Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser-ablation inductively-coupled plasma mass-spectrometry, Geochim. Cosmochim. Acta, 2003, no. 67, pp. 3473–3497.CrossRefGoogle Scholar
  32. Helmy, H.M., Ballhaus, C., Fonseca, R.O.C., Wirth, R., Nagel, T., and Tredoux, M., Noble metal nanoclusters and nanoparticles precede mineral formation in magmatic sulfide melts, Nature Commun., 2013. doi: 10.1038/ncomms3405Google Scholar
  33. Hutchinson, D. and Kinnaird, J.A., Complex multistage genesis for the Ni–Cu–PGE mineralization in the southern region of the Platreef, Bushveld Complex, South Africa, Trans. Inst. Min. Metall., Appl. Earth Sci., 2005, vol. 114, pp. B208–B224.CrossRefGoogle Scholar
  34. Jochum, K.P., Weis, U., Brigitte, S., et al., Determination of reference values for NIST SRM 610-617 glasses following iso guidelines, Geostand. Geoanal. Res., 2011, vol. 34, no. 4, pp. 397–429.CrossRefGoogle Scholar
  35. Kamenetsky, V.S. and van Achterbergh, E., Ryan et al. Extreme chemical heterogeneity of granite-derived hydrothermal fluids: an example from inclusions in a single crystal of miarolitic quartz, Geology, 2002, vol. 30, no. 5, pp. 459–462.CrossRefGoogle Scholar
  36. Kamenetsky, V.S. and Kamenetsky, M.B., Magmatic fluids immiscible with silicate melts: examples from inclusions in phenocrysts and glasses, and implications for magma evolution and metal transport, Geofluids, 2010, vol. 10, nos. 1–2, pp. 293–311.Google Scholar
  37. Kerkhof Van Der, A. and Thiery, R., Carbonic inclusions, Lithos, 2001, vol. 55, pp. 49–68.CrossRefGoogle Scholar
  38. Kinnaird, J.A., Kruger, F.J., Nex, P.A.M., et al., Chromitite formation—a key to understanding processes of platinum enrichment, Trans. Inst. Mining Metallurg., 2002, vol. 11, pp. B23–B35.Google Scholar
  39. Kinnaird, J.A., Kruger, F.J., and Nex, P.A.M., Excursion Guide to the Bushveld Igneous Complex. Geoscience Africa, University of the Witwatersrand, 2004, pp. 1–23.Google Scholar
  40. Kinnaird, J.A., Hutchinson, D., Schurmann, L., et al., Petrology and mineralization of the southern Platreef: Northern Limb of the Bushveld Complex, South Africa, Miner. Deposita, 2005, vol. 40, pp. 576–597.CrossRefGoogle Scholar
  41. Kinnaird, J., An overview of the Plat Platreef, Proceedings of SEG-GSSA, 2008 International Conference, Johannesburg, 2008, pp. 8–11.Google Scholar
  42. Kruger, F.J., The Sr-isotopic stratigraphy of the western Bushveld Complex, S. Afr. J Geol, 1994, vol. 97, pp. 393–398.Google Scholar
  43. Kruger, F.J., Filling the Bushveld Complex magma chamber: lateral expansion, roof and floor interaction, magmatic unconformities, and the formation of giant chromitite, PGE and Ti–V-magnetitite deposits, Miner. Deposita, 2005, vol. 40, pp. 451–472.CrossRefGoogle Scholar
  44. Lavrent’ev, Yu.G. and Usova, L.V., The program complex RMA-89 for quantitative X-ray microanalysis by Camebax micro microprobe, J. Analyt. Chem., 1991, vol. 46, pp. 67–75.Google Scholar
  45. Li, C., Ripley, E.M., Sarkar, A., et al., Origin of phlogopiteorthopyroxene inclusions in chromites from the Merensky Reef of the Bushveld Complex, South Africa, Contrib. Mineral. Petrol., 2005, vol. 150, pp. 119–130.CrossRefGoogle Scholar
  46. Maier, W.D. and Bowen, M.P., The UG2-Merensky Reef interval of the Bushveld Complex northwest of Pretoria, Miner. Deposita, 1996, vol. 31, no. 5, pp. 386–39.Google Scholar
  47. Mathez, E., A magmatic metasomatism and formation of the Merensky Reef, Bushveld Complex, Contrib. Mineral. Petrol., 1995, vol. 119, nos. 2–3, pp. 277–286.CrossRefGoogle Scholar
  48. McDonald, J., Vaughan, D.J., and Tredoux, M., Platinum mineralization in the quartz veins near Naboomspruit, Central Transvaal, S. Afr. J Geol., 1995, vol. 98, no. 2, pp. 168–175.Google Scholar
  49. McDonald, I., Ohnenstetter, D., Rowe, J.P., et al., Platinum precipitation in the Waterberg deposit, Naboomspruit, South Africa, S. Afr. J Geol., 1999, vol. 102, no. 3, pp. 184–191.Google Scholar
  50. Mit’kin, V.N., Zayakina, S.B., and Tsimbalist, V.G., Sample preparation with the use of oxidative fluoride decomposition and sulfation exemplified by the determination of noble metals in geological standard reference materials, J. Anal. Chem., 2003, vol. 58, no. 1, pp. 22–33.Google Scholar
  51. Naldrett, A.J., Gasparrini, E.C., Barnes, S.J., et al., The Upper Critical Zone of the Bushveld Complex and the origin of the Merensky-type ores, Econ. Geol., 1986, vol. 81, pp. 1105–117.CrossRefGoogle Scholar
  52. Naldrett, A.J., Magmatic Sulfide Deposits of Nickel-Copper and Platinum-Metal Ores, St. Petersburg: St. Petersburg University, 2003.Google Scholar
  53. Nex, P.F., Nichol, S., and Ixer, R.A., Geological evidence for hydrothermal and supergene PGE mineralization in the footwall to the Platreef from Tweefontein Hill, South Africa, Proceedings of SEG-GSSA 2008 International Conference, Johannesburg, 2008. pp. 29–32.Google Scholar
  54. Osorgin, N.Yu., Khromatograficheskii analiz gazovoi fazy v mineralakh (metodika, apparatura, metrologiya) (Chromatographic Analysis of Gas Phase in Minerals: Method, Apparatus, and Metrology), Novosibirsk, 1990.Google Scholar
  55. Pearce, N.J.G., Perkins, W.T., Westgate, J.A., et al., Compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials, Geostand. Newsl., J. Geostand. Geoanal., 1997, vol. 21, no. 21, pp. 115–144.CrossRefGoogle Scholar
  56. Potter, R.W., Glynne, M.A., and Brown, D.L., Freezing point depression of aqueous sodium chloride solutions, Econ. Geol., 1978, vol. 73, pp. 284–285.CrossRefGoogle Scholar
  57. Prichard, M., Barnes, S.A., Maier, W.D., et al., Variations in the nature of the platinum-group minerals in a cross-section through the Merensky Reef at Impala platinum: implication for the mode of formation of the reef, Can. Mineral., 2004, vol. 42, pp. 423–437.CrossRefGoogle Scholar
  58. Redder, E., Fluid Inclusions, Rev. Mineral., vol. 12, Washington: Mineral. Soc. Am., 1984.Google Scholar
  59. Schoenberg, R., Kruger, J.F., Nagler, T.F., et al., PGE enrichment in chromitite layers and the Merensky Reef of the western Bushveld Complex; a Re-Os And Rb-Sr isotope study, Earth Planet. Sci. Lett., 1999, vol. 172, nos 1–2, pp. 49–64.CrossRefGoogle Scholar
  60. Scoates, J.S. and Friedman, R.M., Precise age of the platiniferous Merensky Reef, Bushveld Complex, South Africa, by U-Pb zircon chemical abrasion ID-TIMS technique, Econ. Geol., 2008, vol. 103, pp. 465–471.CrossRefGoogle Scholar
  61. Seabrook, C.L., Cawthorn, R.G., and Kruger, F.J., The Merensky Reef, Bushveld Complex: mixing of minerals not mixing of magmas, Econ. Geol., 2005, vol. 100, pp. 1191–1206.CrossRefGoogle Scholar
  62. Smirnov, S.Z., Fluid mode of the magmatic stage of the rare-metal granite–pegmatite systems: petrological sequences, Doctoral (Geolmin) Dissertation, Novosibirsk: Inst. Geol. Mineral. Ross. Akad. Nauk, 2015.Google Scholar
  63. Stewart, D.B., Four phase curve in the system CaAl2Si2O8SiO2H2O between 1 and 10 kilobars, Mineral. Petrol. Mitt, 1967, pp. 1–47.Google Scholar
  64. Stumpfl, E.F. and Rucklidge, J.C., The platiniferous dunite pipes of the eastern bushveld complex, Econ. Geol., 1982, vol. 77, pp. 1419–1431.CrossRefGoogle Scholar
  65. Willmore, C.C., Boudreau, A.E., and Kruger, F.J., The halogen geochemistry of the Bushveld Complex, Republic of South Africa: implications for chalcophile element distribution in the lower and critical zones, J. Petrol., 2000, vol. 41, no. 10, pp. 1517–1539.CrossRefGoogle Scholar
  66. Wilson, A.H., Lee, C.A., and Brown, R.T., Geochemistry of the Merensky Reef, Rustenburg section, Bushveld Complex: controls on the silicate framework and distribution of trace elements, Miner. Deposita, 1999, vol. 34, no. 7, pp. 657–672.CrossRefGoogle Scholar
  67. Wood, S.A., Experimental determination of the hydrolysis constants of Pt2+ and Pd2+ at 25°C from the solubility of Pt and Pd in aqueous hydroxide solutions, Geochim. Cosmochim. Acta, 1991, vol. 55, pp. 1759–1767.CrossRefGoogle Scholar
  68. Wood, S.A., The aqueous geochemistry of the platinumgroup elements with applications to ore deposits, The Geology, Geochemistry, Mineralogy, and Mineral Benefication of Platinum-Group Elements, Cabri, L.J., Ed., Montreal: Can. Inst. Mining, Metallurgy and Petrol. 2002, pp. 211–249.Google Scholar
  69. Yudovskaya, M.A., Kinnaird, D.A., Udachina, L.V., Distler, V.V., and Kuz’min, D.V., Role of magmatic and fluid concentrating in formation of platinum mineralization in the Lower Zone and Platreef as follows from composition of phlogopite, cumulus silicates, and sulfide melt, the Northern Limb of Bushveld Complex, Geol. Ore Deposits, 2014, vol. 56, no. 6, pp. 451–478.CrossRefGoogle Scholar
  70. Zeh, A., Ovtcharova, M., Wilson, A.H., and Schaltegger, U., The Bushveld Complex was emplaced and cooled in less than one million years—results of zirconology, and geotectonic implications, Earth Planet. Sci. Lett., 2015, vol. 418, pp. 103–114.CrossRefGoogle Scholar
  71. Zhitova, L.M., Kinnaird, J.A., Borovikov, A.A., et al., Fluid inclusion evidence of metal redistribution by late magmatogene fluids of the Platreef, Proceedings of SEG-GSSA 2008 International Conference, Johannesburg, 2008, pp. 52–55.Google Scholar
  72. Zhitova, L.M., Borovikov, A.A., Gora, M.P., et al., Evolution trend of magmatogene fluids of the intercumulus crystallization stage of the Merensky Reef, Bushveld Complx, Republic of South Africa, Dokl. Earth Sci., 2009, vol. 429, no. 8, pp. 1299–1306.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • L. M. Zhitova
    • 1
    • 2
  • J. A. Kinnaird
    • 3
  • M. P. Gora
    • 1
  • E. P. Shevko
    • 1
    • 4
  1. 1.Sobolev Institute of Geology and Mineralogy, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Institute of Economic GeologyUniversity of the WitwatersrandWits JohannesburgSouth Africa
  4. 4.Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations