Skip to main content
Log in

Mineralogy and geochemistry of the Tartai massif, East Siberian metallogenic province

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

The Tartai ultramafic-mafic massif is located in the central part of the East Siberian metallogenic (PGE-Cu-Ni) province (728-712 Ma), which constitutes part of the southern margin of the Siberian craton. This dunite-peridotite-pyroxenite-gabbro massif is the host to low-sulfide PGE-Cu-Ni mineralization. The massif was formed by fractional crystallization of picritic magmas and is composed of wehrlite, dunite, plagiowehrlite, and olivine melanogabbro. The composition of olivine varies from Fo89.9 in dunite to Fo83 in melanocratic olivine gabbro; clinopyroxene is esentially augite. Chrome-spinels crystallized at a low degree of oxidation and have a high iron content. Disseminated sulfide mineralization (pentlandite and heazlewoodite) with high PGE concentrations was identified in wehrlites. Pentlandite is enriched in Fe and Co and depleted in S. These features and the association pentlandite with heazlewoodite suggest that the sulfide mineralization was formed over a wide temperature range (600-400°C) at low sulfur activity (logfS2 from −16 to −9). PGM are represented by Ir-bearing sperrylite, Pd-Cu-Sb panning compounds of variable compositions, Pt-Fe-Cu and Pt-Cu alloys. The evolutionary trend of the ore system was from essentially Ni compositions at the early magmatic stage during formation of disseminated mineralization toward Cu-rich composition at the post-magmatic stage. The PGM assemblage from heavy concentrate haloes differs from bedrock-hosted mineralization in its wider variety of mineral species and the presence of refractory platinoids. Sperrylite from heavy concentrate haloes of the Tartai massif serves as a reliable prospecting guide for bedrock-hosted sulfide Cu-Ni deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ariskin, A.A., Konnikov, E.G., Danyushevskii, L.V., et al., The Dovyren intrusive complex: problems of petrology and Ni sulfide mineralization, Geochem. Int., 2009, no. 5, pp. 425–453.

    Google Scholar 

  • Ariskin, A.A., Konnikov, E.G., Danyushevskii, L.V., et al., The Dovyren intrusive complex: geochemistry, petrology, and the history of sulfide saturation of parental magmas, in Ul’trabazit-bazitovye kompleksy skladchatykh oblastei i ikh minerageniya: Mater. IV Mezhdunar. konf. i III molodezhnoi shkoly-seminara (Mafic-Ultramafic Complexes of Folded Areas and their Minerageny: Proceedings of the IV Internat. Conf. and III Youth Workshop), Ulan-Ude: ID “Ekos”, 2012, pp.17–20.

    Google Scholar 

  • Ashworth, J.R., The role of magmatic reaction, diffusion and annealing in the evolution of coronitic microstructure in troctolitic gabbro from Risör, Norway: a discussion, Mineral. Mag., 1986, vol. 50, pp. 469–73.

    Article  Google Scholar 

  • Barnes, S.J. and Kunilov, V.Y., Spinels and mg ilmenites from the Noril’sk and Talnakh intrusions and other mafic rocks of the Siberian Flood basalt province, Econ. Geol., 2000, vol. 95, pp. 1701–1717.

    Google Scholar 

  • Barnes, S.J. and Roeder, P.L., The range of spinel compositions in terrestrial mafic and ultramafic rocks, J. Petrol., 2001, vol. 42, no. 12, pp. 2279–2302.

    Article  Google Scholar 

  • Barnes, S.J., Hill, R.E., and Evans, N.J., Komatiites and nickel sulfide ores of the Black Swan area, Yilgarn Craton, Western Australia. 3: komatiite geochemistry, and implications for ore forming processes, Miner. Deposita, 2004, vol. 39, pp. 729–751.

    Article  Google Scholar 

  • Boynton, W.V., Geochemistry of the rare-earth elements: meteorite studies, in Rare Earth Element Cosmo-chemistry, Amsterdam: Elsevier, 1984, pp.63–114.

    Chapter  Google Scholar 

  • Crawford, A.J., Falloon, T.J., and Green, D.H., Classification, petrogenesis and tectonic setting of boninites. Boninites and Related Rocks, London: Unwin Hyman, 1989.

    Google Scholar 

  • Ernst, R.E., Hamilton, M.A., and Soderlung, U., A proposed 725 Ma Dovyren-Kingash LIP of Southern Siberia, and possible reconstruction link with 725-715 Ma Franklin LIP of North Laurentia, in Abstr. vol. 35 Geol. Assoc. of Canada (GAC)-Mineralog. Assoc. of Canada (MAC), Joint Ann. Meeting Geosc. at Edge. May, 2012, pp. 27–29.

    Google Scholar 

  • Evstigneeva, T.L., Kudryavtsev, A.S., and Rudashevskii, N.S., Platinum-group elements from Yubdo (Ethiopia): new data, Mineral. Zh., 1992, vol. 14, no. 1, pp. 29–41.

    Google Scholar 

  • Gertner, I.F., Glazunov, O.M., and Morikio, T.I., et al., Isotope-geochemical limitations to the model of formation of the Kingash ultramafic-mafic massif (Eastern Sayan), in Petrologiya magmaticheskikh i metamorficheskikh kompleksov: Mater. Vseros. nauch. konf. (Petrology of Igneous and Metamorphic Complexes: Proceedings of All-Russia Scient. Conf.), Tomsk: TGU, 2005, issue 5, pp. 61–72.

    Google Scholar 

  • Glazunov, O.M., Bognibov, V.I., and Ekhanin, A.G., Kingashskoe platinoidno-medno-nikelevoe mestorozhdenie (The Kingash PGE-Cu-Ni deposit), Irkutsk: IGTU, 2003.

    Google Scholar 

  • Glazunov, O.M. and Radomskaya, T.A., Geochemical model of genesis of the Kingash Platinoid-Copper-Nickel deposit, Dokl. Earth Sci., 2010, vol. 430, no. 1, pp. 71–75.

    Article  Google Scholar 

  • Henderson, P. and Wood, R.J., Reaction relationships of chromespinels in igneous rocksfurther evidence from the layered intrusions of Rhum and Mull, Inner Hebrides, Scotland, Contrib. Mineral. Petrol., 1982, vol. 78, pp. 225–229.

    Article  Google Scholar 

  • Hodges, K.V., Geochronology and thermochronology in orogenic system, in Treatise on Geochemistry, Oxford: Elsevier, 2004, pp. 263–292.

    Google Scholar 

  • Irvine, T.N., Chromian spinel as a petrogenetic indicator, part 2. Petrologic applications, Can. J. Earth Sci., 1967, vol. 4, pp. 71–103.

    Article  Google Scholar 

  • Kaneda, H., Takenouchi, S., and Shoji, T., Stability of pentlandite in the Fe-Ni-Co-S system, Miner. Deposita, 1986, vol. 21, no. 3, pp. 169–180.

    Google Scholar 

  • Kislov, E.V., Ioko-Dovyrenskii rassloennyi massiv (Yoko-Dovyren layered massif), Ulan-Ude: BNTs SO RAN, 1998.

    Google Scholar 

  • Kolonin, G.R., Orsoev, D.A., Sinyakova, E.F., and E. V. Kislov, The Ni/Fe ratio in pentlandite as an indicator of sulfur fugacity during the formation of PGE-bearing mineralization in the Yoko-Dovyren massif, Dokl. Earth Sci., 2000, vol. 370, no. 1, pp. 75–79.

    Google Scholar 

  • Konnikov, E.G., Differentsirovannye giperbazit-bazitovye kompleksy dokembriya Zabaikal’ya: Petrologiya i rudoobrazovanie (Differentiated Ultramafic-Mafic Complexes of the Precambrian of Transbaikalia: Petrology and Ore Formation), Novosibirsk: Nauka, 1986.

    Google Scholar 

  • Konnikov, E.G., Kacharovskaya, L.N., Zaguzin, G.N., et al., Peculiarities of the composition of major minerals of sulfide ores from the Baikalskoe copper-nickel deposit, Geol. Geofiz., 1990, vol. 31, no. 2, pp. 59–66.

    Google Scholar 

  • Krivenko, A.P., Izokh, A.E., Tolstykh, N.D., et al., The stability of platinum- and palladium-bearing minerals during destruction of sulfide ores, Dokl. Akad. Nauk, 1995, vol. 342, no. 5, pp. 640–643.

    Google Scholar 

  • Larikova, T.L., Genesis of drusitic (corona) textures around olivine and orthopyroxene during metamorphism of gabbroids in Northern Belomorie, Karelia, Petrology, 2000, vol. 8, no. 4, pp. 384–401.

    Google Scholar 

  • Lavrent’ev, Yu. and Usova, L., New version of the KARAT program for quantitative X-ray spectral analysis, Zh. Anal. Khim., 1994, vol. 49, no. 5, pp. 462–468.

    Google Scholar 

  • Leake, D.E., Woolley, A.R., Arps, C.E.S., et al., Nomenclature of amphiboles: report of the subcommittee on amphiboles of the international mineralogical association, commission on new minerals and mineral names, Can. Mineral., 1997, vol. 35, pp. 219–246.

    Google Scholar 

  • Mekhonoshin, A.S. and Kolotilina, T.B., Petrological-geochemical features of ultrabasites from the southern framing of the Siberian craton and exploration criteria for Ni sulfide ores, Rudy Met., 2006, no. 6, pp. 26–30.

    Google Scholar 

  • Mekhonoshin, A.S. and Kolotilina, T.B., Sulfide PGE-Ni mineralization in massifs of the Gutara-Uda metallogenic zone (southern Siberia), in Ul’trabazit-bazitovye kompleksy skladchatykh oblastei i svyazannye s nimi mestorozhdeniya: Mater. tret’ei mezhdunar. konf. (Ultramafic-Mafic Complexes of Folded Areas and Related Deposits: Proceedings of the 3rd Intern. Conf.), Yekaterinburg, 2009, vol. 2, pp. 49–51.

    Google Scholar 

  • Mekhonoshin, A.S., Kolotilina, T.B., and Doroshkov, A.A., Formation types and mineralization of ultramafic-mafic complexes of the Alkhadyr terrane, Izv. Sib. Otd. Sek. Nauk o Zemle Ross. Akad. Estestv. Nauk. Geologiya, poiski i razvedka rudnykh mestorozhdenii, 2011, vol. 38, no. 1, pp. 40–47.

    Google Scholar 

  • Mekhonoshin, A.S., Volkova, N.I., and Kolotilina, T.B., Metamosphism of the Alkhadyr terrane (Eastern Sayan), in Korrelyatsiya altaid i uralid: magmatizm, metamorfizm, stratigrafiya, geokhronologiya i metallogenicheskoe prognozirovanie: Mater. Rossiisko-Kazakhstanskogo nauch. soveshch (Correlation of Altaids and Uralids: Magmatism, Metamorphism, Stratigraphy, Geochronology, and Metallogenic Prediction: Proceedings of Russian-Kazakhstan Scientific Meeting), Novosibirsk: SO RAN, 2012, pp. 47–50.

    Google Scholar 

  • Mekhonoshin, A.S., Tolstykh, N.D., Podlipsky, M.Yu., et al., PGE mineralization of dunite-wehrlite massifs at the Gutar-Uda interfluve, Eastern Sayan, Geol. Ore Deposits., 2013, vol. 55, no. 3, pp. 162–175.

    Article  Google Scholar 

  • Melcher, F. and Lodziak, J., Platinum-group minerals of concentrates from the Driekop platinum pipe, Eastern Bushveld complex-Tribute to Eugen F. Stumpfl, N. Jb. Mineral. Abh, 2007, vol. 183, no. 2, pp. 173–195.

    Article  Google Scholar 

  • Orsoev, D.A., Rudashevskii, N.S., Kretser, Yu.L., et al., Precious metal mineralization in low sulfide ores of the Yoko-Dovyren layered massif, Northern Baikal region, Dokl. Earth Sci, 2003, vol. 390, no. 4, pp. 545–549.

    Google Scholar 

  • Pavlov, N.V., Chemical composition of chromespinels in relation to petropgraphic composition of rocks of ultramafic intrusions, Trans. Inst. Geol. Nauk AN SSSR, Ser. Rudn. Mestorozhd., vol. 103, no. 13, 1949.

    Google Scholar 

  • Polyakov, G.V., Izokh, A.E., and Krivenko, A.P., Pt-bearing ultramafic-mafic formations of mobile belts of Central and Southeastern Asia, Geol. Geofiz., 2006, vol. 47, no. 12, pp. 1227–1241.

    Google Scholar 

  • Polyakov, G., Izokh, A., Tolstykh, N., et al., Precambrian Pt-Cu-Ni province of southern periphery of Siberian Platform, in Large Igneous Provinces of Asia: Mantle Plumes and Metallogeny. Int. Symp., Irkutsk: Russia Aug., 20–28, 2011. Abstract vol., Irkutsk, 2011, pp.193–195.

    Google Scholar 

  • Polyakov, G.V. and Izokh, A.E., Perspectives of expansion of the Precambrian platinum-bearing potential of the southern Siberian platform, in Platina Rossii (Platinum of Russia), Krasnoyarsk, 2011, vol. VII, pp. 264–274.

    Google Scholar 

  • Polyakov, G.V., Tolstykh, N.D., Mekhonoshin, A.S., et al., Ultramafic-mafic igneous complexes of the Precambrian East Siberian metallogenic province (southern framing of the Siberian craton): age, composition, origin and ore potential, Geol. Geofiz., 2013, vol. 54, no. 11, pp. 1689–1704.

    Google Scholar 

  • Rajamani, V. and Prewitt, C.T., Crystal chemistry of natural pentlandites, Can. Mineral., 1973, vol. 12, no. 3, pp. 178–187.

    Google Scholar 

  • Remaidi, M., Etude geochimique de l’association harzburgite, dunite et pyroxenite de l’Arroyo de la Cala (Massif de Ronda, Espagne). Montpellier 2 (France), Montpellier, 1993.

    Google Scholar 

  • Revillon, S., Arndt, N.T., Chauvel, C., et al., Geochemical study of ultramafic volcanic and plutonic rocks from Gorgona island, Colombia: the plumbing system of an oceanic plateau, J. Petrol., 2000, vol. 41, pp. 1127–1153.

    Article  Google Scholar 

  • Sharkov, E.V., Krasivskaya, I.S., and Chistyakov, A.V., Dispersed mafic-ultramafic intrusive magmatism in Early Paleoproterozoic mobile zones of the Baltic Shield: an example of the Belomorian drusite (coronite) complex, Petrology, 2004, vol. 12, no. 6, pp. 561–582.

    Google Scholar 

  • Sidorov, E.G., Kozlov, A.P., Osipenko, A.B., et al., Gal’moenantskii bazit-giperbazitovyi massiv i ego platinonosnost’ (Galmoenant Mafic-Ultramafic Massif and its Platinum-Bearing Potential), Moscow: Nauchnyi mir, 2012.

    Google Scholar 

  • Stumpfl, E.F., Some new platinoid-rich minerals, identified with the electron microanalyser. (with Plate XVII), Mineral. Mag., 1961, vol. 32, no. 254, pp. 833–847.

    Article  Google Scholar 

  • Sun, S.S. and McDonough, W.F., Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, Spec. Publ.-Geol. Soc. London, vol. 2, no. 1, 1989, pp. 313–345.

    Article  Google Scholar 

  • Tolstykh, N.D. and Podlipsky, M.Yu., Heavy concentrate halo as prospecting guides for PGE mineralization, Geol. Ore Deposits., 2010, vol. 52, no. 3, pp. 196–214.

    Article  Google Scholar 

  • Tomilenko, A.A. and Kovyazin, S.V., Development of corona textures around olivine in anorthosites of the Korosten Pluton, Ukrainian Shield: mineralogy, geochemistry, and fluid inclusions, Petrology, 2008, vol. 16, no. 1, pp. 87–103.

    Article  Google Scholar 

  • Turner, S.P. and Stuwe, K., Low pressure corona textures between olivine and plagioclase in gabbros from Black Hill, South Australia, Mineral. Mag., 1992, vol. 56, pp. 503–509.

    Article  Google Scholar 

  • Vaughan, D.J. and Craig, J.R., Mineral Chemistry of Metal Sulfides, London: Cambridge University Press, 1978.

    Google Scholar 

  • Xiang, W., Griffin, W.L., Jie, C., et al., U and Th contents and Th/U ratios of zircon in felsic and mafic magmatic rocks: improved zircon-melt distribution coefficients, Acta Geol. Sin., 2011, vol. 85, no. 1, pp. 64–174.

    Article  Google Scholar 

  • Yakovleva, A.K., Osokin, A.S., Dokuchaeva, V.S., et al., Analizy mineralov medno-nikelevykh mestorozhdenii Kol’skogo poluostrova (Analysis of Minerals from Cu-Ni Deposits of the Kola Peninsula), Apatity: Izd-vo Kol’skogo filiala AN SSSR, 1983.

    Google Scholar 

  • Yurichev, A.N., Chernyshov, A.I., and Konnikov, E.G., The Talazhin plagiodunite-troctolite-anorthosite-gabbro massif (East Sayan: petrogeochemistry and ore potential, Geol. Geofiz., 2013, vol. 54, no. 2, pp. 219–236.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Podlipsky.

Additional information

Original Russian Text © M.Yu. Podlipsky, A.S. Mekhonoshin, N.D. Tolstykh, A.V. Vishnevskiy, G.V. Polyakov, 2015, published in Geologiya Rudnykh Mestorozhdenii, 2015, Vol. 57, No. 3, pp. 195–220.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podlipsky, M.Y., Mekhonoshin, A.S., Tolstykh, N.D. et al. Mineralogy and geochemistry of the Tartai massif, East Siberian metallogenic province. Geol. Ore Deposits 57, 172–196 (2015). https://doi.org/10.1134/S1075701515030046

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701515030046

Keywords

Navigation