Skip to main content
Log in

Modeling of zoning patterns in garnet: Thermodynamic and kinetic aspects

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

Results from the modeling of compositional zoning patterns in garnet porphyroblasts from the medium-grade metapelitic schist of northern Ladoga area are considered. The P-T pseudosections in the model KMnFMASH system were calculated for this purpose using THERMOCALC software (Powell et al., 1998). Particular emphasis is placed upon the effect of garnet growth kinetics on the model zoning profiles for Mn (Gulbin, 2013). They fit the observed profiles if intergranular diffusion-controlled growth is assumed for porphyroblasts. Additionally, a model of metamorphic fractional crystallization is used to characterize the oscillations in both the garnet core and rim. Starting from the assumption that a reservoir, where garnet grows, consists of chlorite, and that this mineral is intensely replaced with biotite and staurolite at the onset of crystallization, a partial release of Mn from the chlorite structure and the concentration of this component in intergranular space is inferred. In terms of the model under consideration, the coefficient of the Mn partition between garnet and reservoir temporarily increases at the early stage of garnet growth, giving rise to the enrichment of the intermediate zone of porphyroblasts in Mn. In addition to the modeling of garnet growth zoning, its subsequent diffusion modification is estimated on the basis of intracrystalline diffusion profile simulation. The reverse zoned, Mn-rich and Mg-poor garnet rims are related to retrograde growth of garnet at the late stage of porphyroblast formation. The data obtained are used to constrain metamorphic evolution and the P-T-t path of staurolite-bearing rocks in the northern domain of the studied area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baltybaev, Sh.K., Svecofennides of Fennoscandia: spatiotemporal correlation of endogenic processes, Doctoral (Geol.-Mineral.) Dissertation, St. Petersburg, 2005.

    Google Scholar 

  • Baltybaev, Sh.K., Levchenkov, O.A., Glebovitsky, V.A., Levsky, L.K., Kuz’mina, E.V., Makeev, A.F., and Yakovleva, S.Z., Duration of migmatite formation in the granulite-facies metamorphism zone of Svecofennides of the Ladoga region, southeastern Baltic Shield, Dokl. Earth Sci., 2006, vol. 407, no. 2, pp. 271–274.

    Article  Google Scholar 

  • Baltybaev, Sh.K., Levchenkov, O.A., Glebovitsky, V.A., Kuz’mina, E.V., Rizvanova, N.G., Makeev, A.F., and Levsky, L.K., Early migmatites in the prograde metamorphism zone of gneisses in the northern domain of the Ladoga region: U-Pb evidence based on monazite, Dokl. Earth Sci., 2008, vol. 420, no. 4, pp. 589–591.

    Article  Google Scholar 

  • Banno, S. and Chii, S., A model to explain the Mn enrichment in the rim of zoned garnet, Geochem. J., 1978, vol. 12, pp. 253–257.

    Article  Google Scholar 

  • De Béthune, P., Laduron, D., and Bocquet, J., Diffusion processes in resorbed garnets, Contrib. Miner. Petrol., 1975, vol. 50, pp. 197–204.

    Article  Google Scholar 

  • De Capitani, C. and Petrakakis, K., The computation of equilibrium assemblage diagrams with Theriak/Domino software, Am. Mineral., 2010, vol. 95, pp. 1006–1016.

    Article  Google Scholar 

  • Carlson, W.D., Rates of Fe, Mg, Mn, and Ca diffusion in garnet, Am. Mineral., 2006, vol. 91, pp. 1–11.

    Article  Google Scholar 

  • Cygan, R.T. and Lasaga, A.C., Crystal growth and the formation of chemical zoning in garnets, Contrib. Miner. Petrol., 1982, vol. 79, pp. 187–200.

    Article  Google Scholar 

  • Evans, P.T., A method for calculating effective bulk composition modification due to crystal fractionation in garnetbearing schist: implications for isopleth thermobarometry, J. Metamorph. Geol., 2004, vol. 22, pp. 547–557.

    Article  Google Scholar 

  • Ferry, J.M. and Spear, F.S., Experimental calibration of the partitioning of Fe and Mg between biotite and garnet, Contrib. Miner. Petrol., 1978, vol. 66, pp. 113–117.

    Article  Google Scholar 

  • Gaidies, F., de Capitani, C., and Abart, R., THERIA-G: a software program to numerically model prograde garnet growth, Contrib. Miner. Petrol., 2008, vol. 155, pp. 657–671.

    Article  Google Scholar 

  • Ganguly, J., Cation diffusion kinetics in aluminosilicate garnets and geological applications, Rev. Mineral. Geochem., 2010, vol. 72, pp. 559–610.

    Article  Google Scholar 

  • Ganguly, J., Cheng, W., and Chakraborty, S., Cation diffusion in aluminosilicate garnets: experimental determination in pyrope-almandine diffusion couples, Contrib. Miner. Petrol., 1998, vol. 131, pp. 171–180.

    Article  Google Scholar 

  • Gapais, D., Cagnard, F., Gueydan, F., Barbey, P., and Bàllevre, M., Mountain building and exhumation processes through time: inferences from nature and models, Terra Nova, 2009, vol. 21, no. 3, pp. 188–194.

    Article  Google Scholar 

  • Greenland, L.P., An equation for trace element distribution during magmatic crystallization, Am. Mineral., 1970, vol. 55, pp. 455–465.

    Google Scholar 

  • Gulbin, Yu.L., Optimization of the garnet-biotite geothermometer: Part II. Calibration equations and accuracy of the estimation, Geol. Ore Deposits, 2011, vol. 53, spec. issue 7 (Zapiski Russian Mineral. Soc.), pp. 543–557.

    Article  Google Scholar 

  • Gulbin, Yu.L., Garnet-biotite geothermometer and estimation of crystallization temperature of zoned garnets from metapelites: I. Reconstruction of thermal history of porphyroblast growth, Geol. Ore Deposits, 2012, vol. 54, spec. issue 8 (Zapiski Russian Mineral. Soc.), pp. 602–615.

    Article  Google Scholar 

  • Gulbin, Yu.L., Compositional zoning in garnet and kinetics of metamorphic crystallization, Geol. Ore Deposits, 2013, vol. 55, spec. issue 8 (Zapiski Russian Mineral. Soc.), pp.

    Google Scholar 

  • Gulbin, Yu., On estimation and hypothesis testing of the grain size distribution by the Saltykov method, Image Anal. Stereol., 2008, vol. 27, pp. 163–174.

    Article  Google Scholar 

  • Hirsch, D.M., Prior, D.J., and Carlson, W.D., An overgrowth model to explain multiple, dispersed high-Mn regions in the cores of garnet porphyroblasts, Am. Mineral., 2003, vol. 88, pp. 131–141.

    Google Scholar 

  • Holland, T.J.B. and Powell, R., An internally-consistent thermodynamic dataset for phases of petrological interest, J. Metamorph. Geol., 1998, vol. 16, pp. 309–344.

    Article  Google Scholar 

  • Hollister, L.S., Garnet zoning: an interpretation based on the Rayleigh fractionation model, Science, 1966, vol. 154, pp. 1647–1651.

    Article  Google Scholar 

  • Hollister, L.S., Contact metamorphism in the Kwoiek area of British Columbia: an end member of the metamorphic process, Geol. Soc. Amer. Bull., 1969, vol. 80, pp. 2465–2494.

    Article  Google Scholar 

  • Inui, M., Forward calculation of zoned garnet growth with limited diffusion transport in the matrix, Miner. Petrol., 2006, vol. 88, pp. 29–46.

    Article  Google Scholar 

  • Inui, M. and Toriumi, M., A theoretical study on the formation of growth zoning in garnet consuming chlorite, J. Petrol., 2004, vol. 45, pp. 1369–1392.

    Article  Google Scholar 

  • Kalt, A., Corfu, F., and Wijbrans, J.R., Time calibration of a P-T path from a Variscan high-temperature low-pressure metamorphic complex (Bayerische Wald, Germany) and the detection of inherited monazite, Contrib. Miner. Petrol., 2000, vol. 138, pp. 143–163.

    Article  Google Scholar 

  • Konrad-Schmolke, M., Handy, M.R., Babist, J., and O’Brien P.J., Thermodynamic modelling of diffusion-controlled garnet growth, Contrib. Miner. Petrol., 2005, vol. 149, pp. 181–195.

    Article  Google Scholar 

  • Korikovsky, S.P., Fatsii metamorfizma metapelitov (Metamorphic facies of metapelites), Moscow: Nauka, 1979.

    Google Scholar 

  • Kretz, R., Symbols for rock-forming minerals, Amer. Miner, 1983, vol. 68, pp. 277–279.

    Google Scholar 

  • Lindström, R., Viitanen, M., and Juhanoja, J., Ceospeedometry of metamorphic rocks: examples in the Rantasalmi-Sulkava and Kiuruvesi areas, eastern Finland. Biotite-garnet diffusion couples, J. Metamorph. Geol, 1991, vol. 9, pp. 181–190.

    Article  Google Scholar 

  • Mahar, E.M., Baker, J.M., Powell, R., Holland, T.J.B., and Howell, N., The effect of Mn on mineral stability in metapelites, J. Metamorph. Geol., 1997, vol. 15, pp. 223–228.

    Article  Google Scholar 

  • Meth, C.E. and Carlson, W.D., Diffusion-controlled synkinematic growth of garnet from a heterogeneous precursor at Passo del Sole, Switzerland, Canad. Miner., 2005, vol. 43, pp. 157–182.

    Article  Google Scholar 

  • Mouri, H., Väisänen, M., Huhma, H., and Korsman, K., Sm-Nd garnet and U-Pb monazite dating of highgrade metamorphism and crustal melting in the West Uusimaa area, southern Finland, GFF, 2005, vol. 127, pp. 123–128.

    Article  Google Scholar 

  • Okudaira, T., Temperature-time path for the low-pressure Ryoke metamorphism, Japan, based on chemical zoning in garnet, J. Metamorph. Geol., 1996, vol. 14, pp. 427–440.

    Article  Google Scholar 

  • Perchuk, A.L., Burchard, M., Schertl, H.P., Maresch, W.V., Gerya, T.V., Bernhardt, H.J., and Vidal, O., Diffusion of divalent cations in garnet: multicouple experiments, Contrib. Miner. Petrol., 2009, vol. 157, pp. 573–592.

    Article  Google Scholar 

  • Powell, R., Holland, T.J.B., and Worley, B., Calculating phase diagrams involving solid solutions via non-linear equations, with examples using THERMOCALC, J. Metamorph. Geol., 1998, vol. 16, pp. 577–588.

    Article  Google Scholar 

  • Robl, J., Hergarten, S., Stuwe, K., and Hauzenberger, C., THERMAL HISTORY: A new software to interpret diffusive zoning profiles in garnet, Comput. Geosci., 2007, vol. 33, pp. 760–772.

    Article  Google Scholar 

  • Spear, F.S., The Gibbs method and Duhem’s theorem: The quantitative relationships among P, T, chemical potential, phase composition and reaction progress in igneous and metamorphic systems, Contrib. Miner. Petrol., 1988, vol. 99, pp. 249–256.

    Article  Google Scholar 

  • Spear, F.S., On the interpretation of peak metamorphic temperatures in light of garnet diffusion during cooling, J. Metamorph. Geol., 1991, vol. 9, pp. 379–388.

    Article  Google Scholar 

  • Spear, F.S., Koch, M.J., Florence, F.P., and Mehard, T., A model for garnet and plagioclase growth in pelitic schists: implications for thermobarometry and P-T path determinations, J. Metamorph. Geol., 1991, vol. 8, pp. 683–696.

    Article  Google Scholar 

  • Stallard, A. and Hickey, K., A comparison of microstructural and chemical patterns in garnet from the Fleur de Lys Supergroup, Newfoundland, J. Struct. Geol, 2002, vol. 24, pp. 1109–1123.

    Article  Google Scholar 

  • Toriumi, M. and Nomizo, A., Diffusion-controlled garnet growth during Sambagawa metamorphism, Struct. Geol. (J. Tecton. Res. Group Japan), 2000, no. 44, pp. 47–57.

    Google Scholar 

  • Woodsworth, G.J., Homogenization of zoned garnet from pelitic schists, Canad. Miner., 1977, vol. 15, pp. 230–242.

    Google Scholar 

  • Yang, P. and Rivers, T., The origin of Mn and Y annuli in garnet and the thermal dependence of P in garnet and Y in apatite in calc-pelite and pelite, Gagnon terrane, western Labrador, Geol. Mat. Res, 2002, vol. 4, pp. 1–35.

    Google Scholar 

  • Zeh, A., Calculation of garnet fractionation in metamorphic rocks, with application to a flat-top, Y-rich garnet population from the Ruhla Crystalline Complex, Central Germany, J. Petrol., 2006, vol. 47, pp. 2335–2356.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. L. Gulbin.

Additional information

Original Russian Text © Yu.L. Gulbin, 2013, published in Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 2013, No. 1, pp. 3–22.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gulbin, Y.L. Modeling of zoning patterns in garnet: Thermodynamic and kinetic aspects. Geol. Ore Deposits 55, 625–636 (2013). https://doi.org/10.1134/S1075701513080035

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701513080035

Keywords

Navigation