Skip to main content
Log in

Garnet-biotite thermometer and estimation of crystallization temperature of zoned garnets from metapelites: II. Effect of \(X_{H_2 O} \) on estimation accuracy

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

The fluid regime of medium-grade metapelitic systems was studied with mineral fugometers. It has been established that at least some of the rocks under consideration contain mineral assemblages equilibrated with the participation of fluids with an appreciably lowered mole fraction of the aqueous component (0.4–0.7). The data obtained are used to explain the systematic discrepancy between the temperature estimated with the garnet-biotite geothermometer and the program THERMOCALC. It has been suggested that the negative correlation between the temperature intervals of crystallization and the nucleation temperature of the studied garnets is related to the kinetic features of porphyroblast growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker, A.J., Pressures and Temperatures of Metamorphism in the Eastern Dalradian, J. Geol. Soc. London, 1985, vol. 142, pp. 137–148.

    Article  Google Scholar 

  • Burnham, C. W., Holloway J. R., and Davis N. F. Thermodynamic properties of water to 1000°C and 10,000 bars. Geol. Soc. Am. Spec. Pap. 1969. Vol. 132.

  • Bushmin, S.A. and Glebovitsky, V.A., Scheme of Mineral Facies of Metamorphic Rocks, Geol. Ore Deposits, 2008, vol. 50, spec. issue 8 (Zapiski Russian Mineral. Soc.), pp. 659–669.

    Article  Google Scholar 

  • Carlson, W.D., The Significance of Intergranular Diffusion to the Mechanisms and Kinetics of Porphyroblast Crystallization, Contrib. Mineral. Petrol., 1989, vol. 103, no. 1, pp. 1–24.

    Article  Google Scholar 

  • Carlson, W.D., Scales of Disequilibrium and Rates of Equilibration During Metamorphism, Am. Mineral., 2002, vol. 87, pp. 185–204.

    Google Scholar 

  • Carmichael, D.M., Metamorphic Bathozones and Bathograds: a Measure of the Depth of Post-Metamorphic Uplift and Erosion on the Regional Scale, Am. J. Sci., 1978, vol. 278, pp. 769–797.

    Article  Google Scholar 

  • Chamberlain, C.P. and Lyons, J., Pressure, Temperature and Metamorphic Zonation Studies of Pelitic Schists in the Merrimack Synclinorium, South-Central New Hampshire, Am. Mineral., 1983, vol. 68, pp. 530–540.

    Google Scholar 

  • Chatterjee, N.D. and Froese, E., A Thermodynamic Study of the Pseudobinary Join Muscovite-Paragonite in the System KAISi3O8-NaAISi3O8-Al2O3-SiO2-H2O, Am. Mineral., 1975, vol. 60, pp. 985–993.

    Google Scholar 

  • Cheney, J.T. and Guidotti, C.V., Muscovite-Plagioclase Equilibria in Sillimanite + Quartz Bearing Metapelites, Puzzle Mountains Area, Northwest Maine, Am. J. Sci., 1979, vol. 279, pp. 411–434.

    Article  Google Scholar 

  • Dasgupta, S., Ganguly, J., and Neogi, S., Inverted Metamorphic Sequence in the Sikkim Himalayas: Crystallization History, P-T Gradient, and Implications, J. Metamorph. Geol., 2004, vol. 22, pp. 395–412.

    Article  Google Scholar 

  • Dasgupta, S., Ganguly, J., and Neogi, S., Petrology of an Inverted Barrovian Sequence of Metapelites in Sikkim Himalaya, India: Constraints on the Tectonics of Inversion, Am. J. Sci., 2009, vol. 309, pp. 43–84.

    Article  Google Scholar 

  • Dobretsov, N.L., Reverdatto V.V., Sobolev, V.S., et al. (Metamorphic Facies), Sobolev, V.S, Ed., Moscow: Nedra, 1969.

    Google Scholar 

  • Edwards, R.L. and Essene, E.J., Pressure, Temperature and C-O-H Fluid Fugacities across the Amphibolite-Granulite Transition, Northwest Adirondack Mountains, New York, J. Petrol., 1988, vol. 29, pp. 39–72.

    Article  Google Scholar 

  • Farver, J.R. and Yund, R.A., Silicon Diffusion in a Natural Quartz Aggregate: Constraints on Solution-Transfer Diffusion Creep, Tectonophysics, 2000, vol. 325, pp. 193–205.

    Article  Google Scholar 

  • Ferry, J.M., A Comparative Study of Geothermometers and Geobarometers in Pelitic Schists from South-Central Maine, Am. Mineral., 1980, vol. 65, pp. 720–732.

    Google Scholar 

  • Finlay, C.A. and Kerr, A., Evidence for Differences in Growth Rate Among Garnets in Pelitic Schists from Northern Sutherland, Scotland, Mineral. Mag., 1987, vol. 51, pp. 569–576.

    Article  Google Scholar 

  • Ghent, E.D., Robbins, D.B., and Stout, M.Z., Geothermometry, Geobarometry, and Fluid Compositions of Metamorphosed Calc-Silicates and Petites, Mica Creek, British Columbia, Am. Mineral., 1979, vol. 64, pp. 874–885.

    Google Scholar 

  • Grambling, J.A., A Regional Gradient in the Composition of Metamorphic Fluids in Pelitic Schist, Pecos Baldy, New Mexico, Contrib. Mineral. Petrol., 1986, vol. 94, pp. 149–164.

    Article  Google Scholar 

  • Gulbin, Yu.L., Morphometry of Aggregates and Simulation of Phase Transformation Kinetics during Metamorphism, Zapiski Gornogo Inst., 2009, vol. 183, pp. 174–180.

    Google Scholar 

  • Gulbin, Yu.L., Optimization of the Garnet-Biotite Geothermopmetyer: I. Temperature Trends, Geol. Ore Deposits, 2011a, vol. 53, spec. issue 7 (Zapiski Russian Mineral. Soc.), pp. 528–542.

    Article  Google Scholar 

  • Gulbin, Yu.L., Optimization of the Garnet-Biotite Geothermopmetyer: II. Calibration Equations and Accuracy of the Estimation, Geol. Ore Deposits, 2011b, vol. 53, spec. issue 7 (Zapiski Russian Mineral. Soc.), pp. 543–557.

    Article  Google Scholar 

  • Gulbin, Yu.L., Garnet-Biotite Geothermometer and Estimation of Crystallization Temperature of Zonal Garnets from Metapelites. I. Reconstruction of Thermal History of Porphyroblast Growth, Geol. Ore Deposits, 2012, vol. 54, spec. issue 8 (Zapiski Russian Mineral. Soc.), pp.

  • Gulbin, Yu.L., Sorokina, E.A., and Gaidamako, I.M., Study of Porphyroblast Kinetics Exemplified in Garnets of the Northern Ladoga Region, Trudy III Fersmanovskoi sessii (Proceedings of the 3rd Fersman Session, Apatity, April 27–28, 2006), Apatity: K&M, 2006, pp. 116–118.

    Google Scholar 

  • Hodges, K.V. and Spear, F.S., Geothermometry, Geobarometry and the AI2SiO5 Triple Point at Mt. Moosilauke, New Hampshire, Am. Mineral., 1982, vol. 67, pp. 1118–1134.

    Google Scholar 

  • Holdaway, M.J., Stability of Andalusite and the Aluminum Silicate Phase Diagram, Am. J. Sci., 1971, vol. 271, pp. 97–131.

    Article  Google Scholar 

  • Holland, T.J.B. and Powell, R., An Internally Consistent Thermodynamic Dataset for Phases of Petrological Interest, J. Metamorph. Geol., 1998, vol. 16, pp. 309–344.

    Article  Google Scholar 

  • Hoschek, G., The Stability of Staurolite and Chloritoid and Their Significance in Metamorphism of Pelitic Rocks, Contrib. Mineral. Petrol., 1969, vol. 22, pp. 208–232.

    Article  Google Scholar 

  • Kaneko, Y. and Miyano, T., Recalibration of Mutually Consistent Garnet-Biotite and Garnet-Cordierite Geothermometers, Lithos, 2004, vol. 73, pp. 255–269.

    Article  Google Scholar 

  • Kepezhinskas, K.B. and Khlestov, V.V., The Petrogenetic Grid and Subfacies for Middle-Temperature Metapelites, J. Petrol., 1977, vol. 114–143.

  • Kerrick, D.M., Experimental Determination of Muscovite + Quartz Stability with < P tot, Am. J. Sci., 1972, vol. 272, pp. 946–958.

    Article  Google Scholar 

  • Korikovsky, S.P., Fatsii metamorfizma metapelitov (Metamorphic Facies of Metapelites), Moscow: Nauka, 1979.

    Google Scholar 

  • Lang, H.M. and Rice, J.M., Geothermometry, Geobarometry and T-X(Fe-Mg) Relations in Metapelites, Snow Peak, Northern Idaho, J. Petrol., 1985, vol. 26, pp. 889–924.

    Article  Google Scholar 

  • Likhanov, I.I., Reverdatto, V.V., and Selyatitsky, A.Yu., Mineral Equilibria and P-T Diagram for Fe-Al Metapelites in the KFMASH System (K2O-FeO-MgO-Al2O3-SiO2-H2O), Petrology, 2005, vol. 13, no. 1, pp. 73–83.

    Google Scholar 

  • Pattison, D.R.M., Stability of Andalusite and Sillimanite and the Al2SiO5 Triple Point: Constraints from the Ballachulish Aureole, Scotland J. Geol., 1992, vol. 100, pp. 423–446.

    Google Scholar 

  • Pattison, D.R.M., Instability of Al2SiO5 “Triple-Point” Assemblages in Muscovite + Biotite + Quartz-Bearing Metapelites, with Implications, Am. Mineral., 2001, vol. 86, pp. 1414–1422.

    Google Scholar 

  • Pattison, D.R.M. and Tinkham, D.K., Interplay between Equilibrium and Kinetics in Prograde Metamorphism of Pelites: an Example from the Nelson Aureole, British Columbia, J. Metamorph. Geol., 2009, vol. 27, pp. 249–279.

    Article  Google Scholar 

  • Perchuk, L.L., Termodinamicheskii rezhim glubinnogo petrogeneza (Thermodynamic Regime of Deep Petrogenesis), Moscow: Nauka, 1973.

    Google Scholar 

  • Powell, R. and Holland, T.J.B., Calculated Mineral Equilibria in the Pelite System KFMASH (K2O-FeO-MgO-Al2O3-SiO2-H2O), Am. Mineral., 1990, vol. 75, pp. 367–380.

    Google Scholar 

  • Powell, R. and Holland, T.J.B., Optimal Geothermometry and Geobarometry, Am. Mineral., 1994, vol. 79, pp. 120–133.

    Google Scholar 

  • Powell, R., Holland, T.J.B., and Worley, B., Calculating Phase Diagrams Involving Solid Solutions Via Non-Linear Equations, with Examples Using THERMOCALC, J. Metamorph. Geol., 1998, vol. 16, pp. 577–588.

    Article  Google Scholar 

  • Ridley, J and Thompson, A.B., The Role of Mineral Kinetics in the Development of Metamorphic Microtextures, in Fluid-Rock Interactions during Metamorphism, New York: Springer, 1986; Moscow: Mir, 1989, pp. 154–193.

    Google Scholar 

  • Rubie, D.C., Disequilibrium during Metamorphism: the Role of Nucleation Kinetics, Geol. Soc. London Spec. Publ, 1998, vol. 138, 199–214.

    Article  Google Scholar 

  • Sevigny, J.H. and Ghent, E.D., Pressure, Temperature and Fluid Composition during Amphibolite Facies Metamorphism of Graphitic Metapelites, Howard Ridge, British Columbia, J. Metamorph. Geol., 1989, vol. 7, pp. 497–505.

    Article  Google Scholar 

  • Skripov, V.P. and Koverda, V.P., Spontannaya kristallizatsiya pereokhlazhdennykh zhidkostei (Spontaneous Crystallization of Overcooled Liquids), Moscow: Nauka, 1984.

    Google Scholar 

  • Spear, F.S. and Cheney, J.T., A Petrogenetic Grid for Pelitic Schists in the System SiO2-A12O3-FeO-MgO-K2O-H2O, Contrib. Mineral. Petrol., 1989, vol. 101, pp. 149–164.

    Article  Google Scholar 

  • Spear, F.S. and Daniel, C.G., Three-Dimensional Imaging of Garnet Porphyroblast Sizes and Chemical Zoning: Nucleation and Growth History in the Garnet Zone, Geol. Mater. Res., 1998, vol. 1, no. 1, pp. 1–44.

    Google Scholar 

  • Stephenson, B.J., Waters, D.J., and Searle, M.P., Inverted Metamorphism and the Mail Central Thrust: Field Relations and Thermobarometric Constraints from the Kishtwar Window, NW Indian Himalayas, J. Metamorph. Geol., 2000, vol. 18, pp. 571–590.

    Article  Google Scholar 

  • Thompson, A.B., Mineral Reactions in Pelitic Rocks: II. Calculation of Some P-T-X(Fe-Mg) Phase Relations, Am. J. Sci., 1976, vol. 276, pp. 425–454.

    Article  Google Scholar 

  • Tinkham, D.K., Zuluaga, C.A., and Stowell, H.H., Metapelite Phase Equilibria Modeling in MnNCKFMASH: the Effect of Variable Al2O3 and MgO/(MgO + FeO) on Mineral Stability, Geol. Mater. Res., 2001, vol. 3, pp. 1–42.

    Google Scholar 

  • Tirone, M. and Ganguly, J., Garnet Compositions As Recorders of P-T-T History of Metamorphic Rocks, Gondwana Res., 2010, vol. 18, pp. 138–146.

    Article  Google Scholar 

  • Tracy, R.J., Robinson, P., and Thompson, A.B., Garnet Composition and Zoning in the Determination of Temperature and Pressure of Metamorphism, Central Massachusetts, Am. Mineral., 1976, vol. 61, pp. 762–775.

    Google Scholar 

  • Triboulet, C. and Claude, A., Continuous Reactions between Biotite, Garnet, Staurolite, Kyanite, Sillimanite-Andalusite and P-T-Time-Deformation Path in Mica Schists from the Estuary of the River Vilaine, South Brittany, France, J. Metamorph. Geol., 1985, vol. 3, pp. 91–105.

    Article  Google Scholar 

  • Waters, D.J. and Lovegrove, D.P., Assessing the Extent of Disequilibrium and Overstepping of Prograde Metamorphic Reactions in Metapelites from the Bushveld Complex Aureole, South Africa, J. Metamorph. Geol., 2002, vol. 20, pp. 135–149.

    Article  Google Scholar 

  • Wei, C.J., Powell, R., and Clarcke, G.L., Calculated Phase Equilibria for Low- and Medium-Pressure Metapelites in the KFMASH and KMnFMASH Systems, J. Metamorph. Geol., 2004, vol. 12, pp. 99–119.

    Google Scholar 

  • Winkler, H.G.F., Die Genese der Metamorphen Gesteine, Berlin: Springer, 1967; Moscow: Mir, 1969.

    Google Scholar 

  • Xu, G.W., Will, T.M., and Powell, R., A Calculated Petrogenetic Grid for the System K2O-FeO-MgO-Al2O3-SiO2-H2O, with Particular Reference to Contact-Metamorphosed Pelites, J. Metamorph. Geol., 1994, vol. 12, pp. 99–119.

    Article  Google Scholar 

  • Zeh, A. and Holness, M.B., The Effect of Reaction Overstep on Garnet Microtextures in Metapelitic Rocks of the Ilesha Schist Belt, SW Nigeria, J. Petrol., 2003, vol. 44, pp. 967–994.

    Article  Google Scholar 

  • Zeh, A., Calculation of Garnet Fractionation in Metamorphic Rocks, with Application to a Flat-Top, Y-Rich Garnet Population from the Ruhla Crystalline Complex, Central Germany, J. Petrol., 2006, vol. 47, pp. 2335–2356.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. L. Gulbin.

Additional information

Original Russian Text © Yu.L. Gulbin, 2012, published in Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 2012, No. 1, pp. 33–44.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gulbin, Y.L. Garnet-biotite thermometer and estimation of crystallization temperature of zoned garnets from metapelites: II. Effect of \(X_{H_2 O} \) on estimation accuracy. Geol. Ore Deposits 54, 616–624 (2012). https://doi.org/10.1134/S1075701512080090

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701512080090

Keywords

Navigation