Skip to main content
Log in

Thermodynamics of arsenates, selenites, and sulfates in the oxidation zone of sulfide ores: IV. Eh-pH diagrams of the Me-Se-H2O systems (Me = Co, Ni, Fe, Cu, Zn, Pb) at 25°C

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

The behavior of selenium at the Earth’s surface and nearby at low temperatures and pressures is controlled by variations of the redox potential and the acidity of solutions. These parameters determine the migration of selenium and its precipitation as various solid phases. Understanding the mechanism of selenium’s behavior under surface conditions, which is important for solving environmental problems, is an urgent task of contemporary mineralogy and geochemistry. The activities of components in natural waters beyond the zones of natural (oxidation zones) and man-made contamination with selenium (a ΣSe = 10−9, a ΣFe = 10−5, a ΣCu = 10−7, a ΣZn = 5 × 10−7, a ΣCo = 10−8, a ΣNi = 6 × 10−8, a ΣPb = 10−8) and in waters formed in the oxidation zone (a ΣSe = 10−5–10−4, a ΣFe = 10−2, a ΣCu = 10−2, a ΣZn = 5 × 10−2, a ΣCo = 10−3, a ΣNi = 10−2, a ΣPb = 10−4) have been estimated. Eh-pH diagrams were calculated and plotted using the Geochemist’s Workbench (GMB 7.0) software package. The database comprises the thermodynamic parameters of 46 elements, 47 main particles, 48 redox pairs, 551 particles in solution, 624 solid phases, and 10 gases. The Eh-pH diagrams of the Me-Se-H2O systems (Me = Co, Ni, Fe, Cu, Zn, Pb) were plotted for the average contents of these elements in underground water and for their contents in oxidation zones of sulfide deposits. The formation of Co, Ni, Fe, Cu, Zn, and Pb selenites and selenates at the surface is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arislarain, L.F. and Hurlbut, C.S., Ahfeldite from Pacajake Bolivia: Restudy, Am. Mineral., 1969, vol. 54, pp. 448–456.

    Google Scholar 

  • Bertrand, E., Sur la molybdomenite (sélénite de plomb), la cobaltomenite (sélénite de cobalt) et l’acide sélénieux de Bur’yanova, E.Z., Thermodynamic Aspect of the Formation Conditions of Fe, Pb, Zn, and Cd Selenides and Native Selenium in Sedimentary Rocks, Geokhimiya, 1969, vol. 7, no. 12, pp. 1451–1464.

    Google Scholar 

  • Charykova, M.V., Krivovichev, V.G., and Depmeier, W., Selenites and Sulfates: the System Ni2+, Co2+//Se O 2−3 , SeO 2−4 , H2O—Thermodynamic Analysis and Geological Applications, Zap. Ross. Mineral. O-va, 2007, vol. 136, no. 7, pp. 246–266.

    Google Scholar 

  • Charykova, M.V., Krivovichev, V.G., and Depmeier, W., Thermodynamics of Arsenates, Selenites, and Sulfates in the Oxidation Zone of Sulfide Ores. I. Thermodynamic Constants at Ambient Conditions, Zap. Ross. Mineral. O-va, 2009, no. 6, pp. 105–117. [Geol. Ore Dep. (Engl. Transl.), 2010, vol. 52, spec. issue 8 (Zapiski Russian Mineral. Soc.), pp. 689–700].

  • Charykova, M.V., Krivovichev, V.G., Yakovenko, O.S., and Depmeier, W., Thermodynamics of Arsenates, Selenites, and Sulfates in the Oxidation Zone of Sulfide Ores. III. Eh-pH Diagrams for the Me-As-H2O Systems (Me = Co, Ni, Fe, Cu, Zn, Pb) at 25°C, Zap. Ross. Mineral. O-va, 2010, vol. 139, no. 3, pp. 1–14 [Geol. Ore Dep. (Engl. Transl.), 2011, vol. 53, spec. issue 7 (Zapiski Russian Mineral. Soc.), pp.].

    Google Scholar 

  • Des Cloizeaux, A.L. and Damour, M.A. Note sur la chalcomenite, nouvelle espèce minérale (sélénite de cuivre), Bull. Soc. Geol. France, 1881, vol. 4, pp. 51–55.

    Google Scholar 

  • Dunn, P.J., Peacor, D.R., and Sturman, B.D., Mandarinoite, a New Ferric-Iron Selenite from Bolivia, Can. Mineral., 1978, vol. 16, pp. 605–609.

    Google Scholar 

  • Garrels, R. and Christ, Ch., Solutions, Minerals, and Equilibria, New York: Harper and Row, 1965.

    Google Scholar 

  • Herzenberg, R. and Ahlfeld, F., Blockit, ein Neues Selenerz aus Bolivien, Zentralbl. Miner. Geol. Palaent. Abt. A, 1935, pp. 277–279.

  • Howard, J.H.., Geochemistry of Selenium: Formation of Ferroselite and Selenium Behavior in the Vicinity of Oxidizing Sulfide and Uranium Deposits, Geochim. Cosmochim. Acta, 1977, vol. 41, pp. 1665–1678.

    Article  Google Scholar 

  • Krainov, S.R., Ryzhenko, B.N., and Shvets, V.M., Geokhimiya podzemnykh vod. Teoreticheskie, prikladnye i ekologicheskie aspekty (Geochemistry of Subsurface Water: Theoretical, Applied, and Environmental Aspects), Moscow: Nauka, 2004.

    Google Scholar 

  • Krivovichev, V.G. and Depmeier, V., Selenites and Selenates: Se-S-H2O, Pb-Se-S-H2O, and U-Se-I-H2O Systems-Thermodynamic Analysis and Geological Applications, Zap. Ross. Mineral. O-va, 2005, vol. 134, no. 4, pp. 1–14.

    Google Scholar 

  • Mandarino, J.A., Natural and Synthetic Selenites and Selenates and Their Gladstone-Dale Compatibility, Eur. J. Mineral., 1994, vol. 6, pp. 337–349.

    Google Scholar 

  • Naumov, G.B., Ryzhenko, B.N., and Khodakovsky, I.L., Spravochnik termodinamicheskikh velichin (Thermodynamic Data Handbook), Moscow: Atomizdat, 1971.

    Google Scholar 

  • Olin, A., Nolang, B., Osadchii, E.G., Ohman, L.-O., and Rosen, E., Chemical Thermodynamics of Selenium, Amsterdam: Elsevier, 2005.

    Google Scholar 

  • Seby, F., Potin-Gautier, M., Giffaut, E., et al., A Critical Review of Thermodynamic Data for Selenium Species at 25°C, Chem. Geol., 2001, vol. 171 P, pp. 173–194.

    Article  Google Scholar 

  • Shvartsev, S.L., Gidrogeokhimiya zony gipergeneza. (Hydrogeochemistry of Supergene Zone), Moscow: Nedra. 1998.

    Google Scholar 

  • Simon, G. and Essene, E.J., Phase Relations among Selenides, Sulfides, Tellurides and Oxides. I. Thermodynamic Properties and Calculated Equilibria, Econ. Geol., 1996, vol. 91, pp. 1183–1208.

    Article  Google Scholar 

  • Simon, G., Kesler, S.E., and Essene, E.J., Phase Relations Among Selenides, Sulfides, Tellurides and Oxides. II. Applications to Selenide-Bearing Ore Deposits, Econ. Geol., 1997, vol. 92, pp. 468–484.

    Article  Google Scholar 

  • Tischendorf, G. and Ungethum, H., Über die Bildungsbedingungen von Clausthalit-Galenit und Bemerkungen zur Selenverteilung in Galenit in Abhangigkeit von Redoxpotential und von pH-Wert, Chem. Erde, 1964, vol. 23, no. 4, pp. 279–311.

    Google Scholar 

  • Treatise on Geochemistry, Vol. 9: Environmental Geochemistry, Lonar, B.S., Ed., Amsterdam: Elsevier Pergamon, 2004.

    Google Scholar 

  • Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, R.H., Halow, I., Bailey, S.M., Churney, K.L., and Nuttal, R.L., The NBS Tables of Chemical Thermodynamic Properties: Selected Values for Inorganic and C1 and C2 Organic Substances in SI Units, J. Phys. Chem. Ref. Data, 1982, vol. 11,Suppl. 2, pp. 1–390.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Krivovichev.

Additional information

Original Russian Text © V.G. Krivovichev, M.V. Charykova, O.S. Yakovenko, W. Depmeier, 2010, published in Zapiski RMO (Proceedings of the Russian Mineralogical Society), 2010, No. 4, pp. 1–15.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krivovichev, V.G., Charykova, M.V., Yakovenko, O.S. et al. Thermodynamics of arsenates, selenites, and sulfates in the oxidation zone of sulfide ores: IV. Eh-pH diagrams of the Me-Se-H2O systems (Me = Co, Ni, Fe, Cu, Zn, Pb) at 25°C. Geol. Ore Deposits 53, 514–527 (2011). https://doi.org/10.1134/S1075701511070117

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701511070117

Keywords

Navigation