Skip to main content
Log in

Synchrotron-excited luminescence of natural zircon

  • Methods of Research of Minerals, Rocks, and Ores
  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

The luminescence properties of two single zircon crystals from kimberlite of Yakutia have been studied, excited by the DORIS HASYLAB synchrotron, Germany, within energy range from the visible to the soft X-ray region (5–25, 50–200, and 500–620 eV) at temperatures of 300 and 10 K. The luminescence spectra in the range of 2.5 to 6.0 eV and excitation spectra of the main bands have been examined, the physical nature of the luminescence centers has been discussed, and the luminescence properties of a crystal containing growth (radiation) structural defects and a crystal with the same impurities but annealed in air at 1200°C are compared. The zoned structure of the mineral has been considered and the value of the energy gap (E g) in the mineral has been estimated at 7.1 eV. Two groups of luminescence bands caused by impurities of intrinsic (growth, radiation) nature (E max = 2.1, 2.7–2.8, and 3.2–3.3 eV) and matrix luminescence (E max = 4.4−4.7 and 5.4 eV) probably with the participation of excitons were distinguished on the basis of selective excitation of zircon with different synchrotron energies relative to the gap value (E excit < E g, E excitE g, and E excitE g). The short-lived component with a response time of 4 ns has been revealed in the afterglow of zircon in the region of 5.4 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. F. C. Claridge, N. S. Lees, W. C. Tennant, and C. J. Walsby, “Oxigening-Hole Centers in X-Irradiated Zircon: 10 K EPR Studies,” J. Phys.: Condensed Matter 12, 1431–1440 (2000).

    Article  Google Scholar 

  2. V. Correcher, J. Garcia-Guinea, L. M. Robredo, and L. Sanchez-Mucoz, “Spectra Luminescence Characterization of Metamictization in a Brazilian Zircon Megacryst,” Radiation Measurements (2007). doi:10.1016/j.radmeas.2007.10.041.

  3. T. Demiray, D. K. Nath, and F. Hammel, “Zircon-Vanadium Blue Pigment,” J. Am. Ceram. Soc. 53, 1–4 (1970).

    Article  Google Scholar 

  4. R.C. Ewing, A. Meldrum, L. Wang, et al., “Radiation Effects in Zircon,” Rev. Mineral. Geochem. 53, 387–425 (2006).

    Article  Google Scholar 

  5. P. E. Fielding, “Colour Centers in Zircon Containing Both Eu3+ and U4+ Ions,” Austral. J. Chem. 23, 1513–1521 (1970).

    Article  Google Scholar 

  6. M. Gaft, “Application of Thermal Treatment of Zircon for the Interpretation of Luminescence Centers,” J. Therm. Anal. 38, 2281–2290 (1992).

    Article  Google Scholar 

  7. M. L. Gaft, A. A. Rogozhin, V. A. Rassulov, and V. A. Zhukova, “Multicenter Nature of Yellow Photoluminescence of Zircon,” Mineral. Zh. 9(6), 63–67 (1987).

    Google Scholar 

  8. M. Gaft, I. Shinno, G. Panczer, and R. Reisfeld, “Laser-Induced Time-Resolved Spectroscopy of Visible Broad Luminescence Bands in Zircon,” Miner. Petrol. 76, 235–246 (2002).

    Article  Google Scholar 

  9. B. S. Gorobets and A. A. Rogozhin, Luminescence Spectra of Minerals. Handbook (RITs VIMS “Mineral’noe syr’e”, Moscow, 2001) [in Russian].

    Google Scholar 

  10. J. Gotze, U. Kempe, D. Habermann, et al., “High-Resolution Cathodo-Luminescence Combined with SHRIMP Ion Probe Measurements of Detrital Zircons,” Mineral. Mag. 63, 179–187 (1999).

    Article  Google Scholar 

  11. J. M. Hanchar and R. L. Rudnic, “Revealing Hidden Structures: the Application of Cathodoluminescence and Back-Scattered Electron Imaging To Dating Zircons from Lower Crustal Xenoliths,” Lithos 36, 289–303 (1995).

    Article  Google Scholar 

  12. P. Iacconi, A. Deville, and B. Gaillard, “Trapping and Emission Centers in X-Irradiated Zircon II. Contribution of the Groups,” Phys. Stat. Solidi 59, 639–646 (1980).

    Article  Google Scholar 

  13. V. Yu. Ivanov, E. S. Shlygin, V. A. Putovarov, et al., “Intrinsic Luminescence of REE Silicates,” FTT, 2008 (in press).

  14. V. Yu. Ivanov, K. I. Shirinsky, E. S. Shlugin, and V. A. Rustovarov, “VUV Spectroscopy of Intrinsic Electronic Excitations in Gd2SiO5 and Gd2SiO5-Ce crystals,” Izv. Vyssh. Uchebn. Zaved., Fiz., No. 4, 53–56 (2006).

  15. V. Yu. Ivanov, V. A. Pustovarov, K. I. Shirinsky, et al., “Intrinsic Electronic Excitation A2SiO5 (A = Y, Lu, Gd) and Sc2SiO5 Scintillators,” in Proceedings of the International Conference on Inorganic Scintillators and Their Industrial Applications (Inst. Scint. Materials, Kharkov, 2005), pp. 33–35.

    Google Scholar 

  16. U. Kempe, T. Grunner, L. Nasdala, and D. Wolf, “Relevance of Cathodoluminescence for the Interpretation of U-Pb Zircon Ages, with and Example of An Application to a Study of Zircons from the Saxonians Granulite Complex,” in Cathodoluminescence in Geosciences (Springer, Berlin, 2000), pp. 415–455.

    Google Scholar 

  17. Y. Kirsh and P. D. Townsend, “Electron and Hole Centers Produced in Zircon by X-Irradiation at Room Temperature,” J. Phys. C: Solid State Phys. 20, 967–980 (1987).

    Article  Google Scholar 

  18. A. A. Krasnobaev, S. L. Votyakov, and V. Ya. Krokhalev, Spectroscopy of Zircons: Properties and Geological Application (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  19. C. U. S. Larsson, A. Beutler, O. Bjorneholm, et al., “First Result from the High-Resolution XUV Undulator Beamline BW3 at HASYLAB,” Nucl. Instr. Meth. Phys. Res. A 337, 603–608 (1994).

    Article  Google Scholar 

  20. M. A. Laruhin, H. J. van Es, G. R. Bulka, et al., “EPR Study of Radiation-Induced Defects in the Thermoluminescence Dating Medium Zircon (ZrSiO4),” J. Phys.: Condensed Matter 14, 3813–3831 (2002).

    Article  Google Scholar 

  21. F. Moser and F. Urbach, “Optical Absorption of Pure Silver Halides,” Phys. Rev. 102, 1519–1523 (1956).

    Article  Google Scholar 

  22. L. Nasdala, C. L. Lengauer, J. M. Hanchar, et al., “Annealing Radiation Damage and the Recovery of Cathodoluminescence,” Chem. Geol. 191, 121–140 (2002).

    Article  Google Scholar 

  23. U. Poller, J. Huth, P. Hoppe, and I. S. Williams, “REE, U, Th, and Hf Distribution in Zircon from Western Carpathian Variscan Granitoids: a Combined Cathodoluminescence and Ion Microprobe Study,” Am. J. Sci. 301, 858–876 (2001).

    Article  Google Scholar 

  24. G. Remond, F. Cesbron, R. Chapoulite, et al., “Cathodoluminescence Applied to the Microcharacterization of Mineral Materials: a Present Status in Experimentation and Interpretation,” Scanning Microsc. Intl. 6, 23–68 (1992).

    Google Scholar 

  25. G. Remond, M. R. Phillips, and C. Roques-Carmes, “Importance of Instrumental and Experimental Factors on the Interpretation of Cathodoluminescence Data from Wide-Band Gap Materials,” in Cathodoluminescence in Geosciences (Springer, Berlin, 2000), pp. 59–126.

    Google Scholar 

  26. I. Richman, P. Kisliuk, and E. J. Wong, “Absorption Spectrum of U4+ in Zircon (ZrSiO4),” Phys. Rev. B: 155, 262–267 (1967).

    Article  Google Scholar 

  27. J. Robertson, “Band Structures and Band Offsets of High-K Dielectrics on Si,” Appl. Surf. Sci. 190, 2–10 (2002).

    Article  Google Scholar 

  28. Yu. V. Shchapova, S. L. Votyakov, K. S. Votyakov, and A. L. Ivanovsky, “Electron Structure and Nature of Intrinsic Color of Crystalline and Weakly-Metamictized Zircon: Evidence from Quantum-Chemical Calculation,” in Yearbook-2004 (Inst. Geol. Geochem., Yekaterinburg, 2005), pp. 433–443 [in Russian].

    Google Scholar 

  29. A. R. Silin and A. N. Trukhin, Point Defects and Element Excitations in Crystalline and Glass-Type SiO 2 (Zinatne, Riga, 1985) [in Russian].

    Google Scholar 

  30. L. Skuja, “Optically Active Oxygen-Deficiency-Related Centers in Amorphous Silicon Dioxide,” J. Noncrystalline Solids 239, 16–48 (1998).

    Article  Google Scholar 

  31. M. N. Taran, “Investigation of Color Nature of Gem Zircons,” in Problems of Geochemystry, Mineralogy, Petrology, and Ore Formation (Naukova dumka, Kiev, 1978), pp. 50–56 [in Russian].

    Google Scholar 

  32. A. Tarashchan, Luminascence of Minerals (Naukova Dumka, Kiev, 1978) [in Russian].

    Google Scholar 

  33. S. L. Votyakov, I. P. Ivanov, A. A. Krasnobaev, et al., “Spectroscopic and Luminescent Properties of Hydrothermally Synthesized Zr Orthosilicate,” Neorg. Mater. 22, 281–286 (1986).

    Google Scholar 

  34. S. L. Votyakov, V. N. Bykov, D. R. Borisov, et al., “Effect of Metamict State of Zircons on Their Vibration Spectra of Laser- and X-ray Luminescence,” Ural Mineral. Sborn. No. 4, 65–72 (1995).

  35. B. Yang, B. J. Luff, and P. D. Townsend, “Cathodoluminescence of Natural Zircons,” J. Phys.: Condensed Matter 4, 5617–5624 (1992).

    Article  Google Scholar 

  36. G. Zimmerer, “Status Report on Luminescence Investigations with Synchrotron Radiation at HASYLAB,” Nucl. Instr. and Meth. in Phys. Res. A 38, 178–186 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Shchapova.

Additional information

Original Russian Text © Yu.V. Shchapova, S.L. Votyakov, V.Yu. Ivanov, V.A. Pustovarov, 2009, published in Zapiski RMO (Proceedings of the Russian Mineralogical Society), 2009, No. 3, pp. 127–139.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shchapova, Y.V., Votyakov, S.L., Ivanov, V.Y. et al. Synchrotron-excited luminescence of natural zircon. Geol. Ore Deposits 52, 679–687 (2010). https://doi.org/10.1134/S1075701510070214

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701510070214

Keywords

Navigation