Advertisement

Geology of Ore Deposits

, Volume 52, Issue 7, pp 574–583 | Cite as

Oxyvanite, V3O5, a new mineral species and the oxyvanite-berdesinskiite V2TiO5 series from metamorphic rocks of the Slyudyanka Complex, southern Baikal region

  • L. Z. Reznitsky
  • E. V. Sklyarov
  • T. Armbruster
  • Z. F. Ushchapovskaya
  • E. V. Galuskin
  • Yu. S. Polekhovsky
  • I. G. Barash
New Minerals, Nomenclature, and Classification

Abstract

Oxyvanite has been identified as an accessory mineral in Cr-V-bearing quartz-diopside meta- morphic rocks of the Slyudyanka Complex in the southern Baikal region, Russia. The new mineral was named after constituents of its ideal formula (oxygen and vanadium). Quartz, Cr-V-bearing tremolite and micas, calcite, clinopyroxenes of the diopside-kosmochlor-natalyite series, Cr-bearing goldmanite, eskolaite-karelianite dravite-vanadiumdravite, V-bearing titanite, ilmenite, and rutile, berdesinskiite, schreyerite, plagioclase, scapolite, barite, zircon, and unnamed U-Ti-V-Cr phases are associated minerals. Oxyvanite occurs as anhedral grains up to 0.1–0.15 mm in size, without visible cleavage and parting. The new mineral is brittle, with conchoidal fracture. Observed by the naked eye, the mineral is black, with black streak and resinous luster. The microhardness (VHN) is 1064–1266 kg/mm2 (load 30 g), and the mean value is 1180 kg/mm2. The Mohs hardness is about 7.0–7.5. The calculated density is 4.66(2) g/cm3. The color of oxyvanite is pale cream in reflected light, without internal reflections. The measured reflectance in air is as follows (λ, nm-R, %): 440-17.8; 460-18; 480-18.2; 520-18.6; 520-18.6; 540-18.8; 560-18.9; 580-19; 600-19.1; 620-19.2; 640-19.3; 660-19.4; 680-19.5; 700-19.7. Oxyvanite is monoclinic, space group C2/c; the unit-cell dimensions are a = 10.03(2), b = 5.050(1), c = 7.000(1) Å, β = 111.14(1)°, V = 330.76(5)Å3, Z = 4. The strongest reflections in the X-ray powder pattern [d, Å, (I in 5-number scale)(hkl)] are 3.28 (5) (20\( \bar 2 \)); 2.88 (5) (11\( \bar 2 \)); 2.65, (5) (310); 2.44 (5) (112); 1.717 (5) (42\( \bar 2 \)); 1.633 (5) (31\( \bar 4 \)); 1.446 (4) (33\( \bar 2 \)); 1.379 (5) (422). The chemical composition (electron microprobe, average of six point analyses, wt %): 14.04 TiO2, 73.13 V2O3 (53.97 V2O3calc, 21.25 VO2calc), 10.76 Cr2O3, 0.04 Fe2O3, 0.01 Al2O3, 0.02 MgO, total is 100.03. The empirical formula is (V 1.70 3+ Cr0.30)2.0(V 0.59 4+ Ti0.41)1.0O5. Oxyvanite is the end member of the oxyvanite-berdesinskiite series with homovalent isomorphic substitution of V4+ for Ti. The type material has been deposited at the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow.

Keywords

Diopside Solid Solution Series Ideal Formula Conchoidal Fracture Mohs Hardness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Andersson, A. Bundholm, and A. Magneli, “Homologous Series of Mixed Titanium Chromium Oxides Tin − 2Cr2O2n−1 Isomorphous with the Series TinO2n−1 and VnO2n − 1,” Acta Chemical Scand., 13(5), 989–997 (1959).CrossRefGoogle Scholar
  2. 2.
    H. J. Bernhardt, K. Schmetzer, and O. Medenbach, “Berdesinskiite, V2TiO5, a New Mineral from Kenya and Additional Data for Schreyerite, V2Ti3O9,” Neues Jahrb. Miner. Monats, No. 3, 110–118 (1983).Google Scholar
  3. 3.
    N. Döbelin, L. Z. Reznitsky, E. V. Sklyarov, et al., “Schreyerite, V2Ti3O9: New Occurrence and Crystal Structure,” Am. Mineral. 91(1), 196–202 (2006).CrossRefGoogle Scholar
  4. 4.
    M. Drofenik, L. Golič, D. Hanžel, et al., “A New Monoclinic Phase in the Fe2O3-TiO2 System. I. Structure Determination and Mössbauer Spectroscopy,” J. Solid State Chem. 40, 47–51 (1981).CrossRefGoogle Scholar
  5. 5.
    I. E. Grey, A. F. Reid, and J. G. Allpress, “Compounds in the System Cr2O3-Fe2O3-TiO2-ZrO2 Based on Intergrowth of the α-PbO2 and V3O5 Structural Types,” J. Solid State Chem. 8(1), 86–89 (1973).CrossRefGoogle Scholar
  6. 6.
    S. H. Hong and S. Åbrink, “The Structure of the High-Temperature Modification of V3O5 at 458 K,” Acta Crystallogr. B38. 713–719 (1982a).Google Scholar
  7. 7.
    S. H. Hong and S. Åbrink, “The Structure of γ-Ti3O5 at 297 K,” Acta Crystallogr. B38 2570–2576 (1982b).Google Scholar
  8. 8.
    S. Kimiya, S. Hirano, and S. Somiya, “The Compound Cr2TiO5 in the System Cr2O3-TiO2,” J. Solid State Chem. 28, 21–28 (1979).CrossRefGoogle Scholar
  9. 9.
    A. A. Konev, L. Z. Reznitsky, G. D. Feoktistov, et al., Mineralogy of East Siberia on the Turn of XXI Century (New and Rare Minerals) (Intermet-Engineering, Moscow, 2001) [in Russian].Google Scholar
  10. 10.
    K. Kosuge and S. Kachi, “Electron-Diffraction and Electron-Microscopic Observation of the Pseudo Binary TiO2-V2O3 System,” Chemica Scripta 8(2), 70–83 (1975).Google Scholar
  11. 11.
    H. Müller-Buschbaum and K. Bluhm, “Weitere Magnetische Untersuchungen An Ti(3 − x)M(x)O5-Phasen (M = Al3+, Fe2+, Mn2+, Mg2+) Mit Einem Beitrag Ueber CrTi2O5,” Zschr. Anorgan. Allgem. Chem. 558, 28–34 (1988).CrossRefGoogle Scholar
  12. 12.
    L. Z. Reznitsky, “New Cr-V-Ti Oxides in Metamorphic Rocks of the Baikal Region,” in Mineralogy in the Whole Sense of This Word (St. Petersburg State Univ., St. Petersburg, 2004), p. 196 [in Russian].Google Scholar
  13. 13.
    L. Z. Reznitsky, E. V. Sklyarov, T. Armbruster, et al., “Batisivite V8Ti6[Ba(Si2O)]O28, a New Mineral Species from the Derbylite Group,” Zap. Ross. Mineral. O-va 136(5), 65–75 (2007) [Geol. Ore Deposits 50 (Spec. Issue 7, Zapiski Russian Mineral. Soc.) 565–573 (2007)].Google Scholar
  14. 14.
    L. Z. Reznitsky, E. V. Sklyarov, Z. F. Ushchapovskaya, et al., “Vanadiumdravite NaMg3V6[Si6O18][VO3]3(OH)4, a New Mineral of the Tourmaline Group,” Zap. Vseross. Mineral. O-va 130(2) 59–72 (2001).Google Scholar
  15. 15.
    E. P. Vasil’ev, L. Z. Reznitsky, V. N. Vishnyakov, and E. A. Nekrasova, The Slyudyanka Crystalline Complex (Nauka, Novosibirsk, 1981) [in Russian].Google Scholar
  16. 16.
    H. D. Werner, “Phasenbeziehungen in System TiO2-CrO1.5,” Neus Jahrb. Miner. Monats, No. 5, 219–234 (1974).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • L. Z. Reznitsky
    • 1
  • E. V. Sklyarov
    • 1
  • T. Armbruster
    • 2
  • Z. F. Ushchapovskaya
    • 1
  • E. V. Galuskin
    • 3
  • Yu. S. Polekhovsky
    • 4
  • I. G. Barash
    • 1
  1. 1.Institute of the Earth’s Crust, Siberian BranchRussian Academy of SciencesIrkutskRussia
  2. 2.Bern UniversityBernSwitzerland
  3. 3.Department of Earth SciencesUniversity of SilesiaSosnowiecPoland
  4. 4.Faculty of GeologySt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations