Skip to main content
Log in

Phosphate and sulfate-phosphate mineralization in sillimanite-bearing rocks at the Kyakhta deposit, western Transbaikal region

  • Minerals and Parageneses of Minerals
  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

The phosphate and sulfate-phosphate minerals in the sillimanite-bearing rocks of the Kyakhta deposit are considered. The mineral assemblages of the high-Al rocks were formed during prograde and retrograde stages of metamorphism. The first stage is characterized by the formation of sillimanite, corundum, muscovite, quartz, rutile, titanohematite, magnetite, feldspar, biotite, lazulite, and wagnerite. The muscovite composition showed that sillimanite paragenesis was formed at temperatures above 510–600°C. According to oxygen isotope thermometry, the minimum metamorphic temperature for quartz and titanohematite is 690°C. Andalusite, diaspore, quartz, pyrophyllite, muscovite, and a wide range of phosphates and sulfate-phosphates crystallized during the retrograde stage. The decrease in temperature and increase in the water content led to the following sequence of mineral formation: Mg-Fe-Al-Ca-REE-rich phosphates (lazulite, scorzalite, augelite, apatite, and monazite) → Ca-Sr sulfate-phosphates (woodhouseite and svanbergite) → sulfate (barite) → Sr-Ca-Ba aluminophosphates (goyazite, crandallite, and gorceixite). The chemical compositions of phosphates and sulfate-phosphates minerals and their formation conditions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. G. Dill, “The Geology of Aluminium Phosphates and Sulfates of the Alunite Supergoup,” Earth-Sci. Rev. 53, 35–93 (2001).

    Article  Google Scholar 

  2. H. P. Eugster and H. S. Yoder, “A Join Muscovite-Paragonite,” Carnegie Inst. Geophys. Lab. Yearbook 55, 75 (1955).

    Google Scholar 

  3. I. A. Izbrodin, Candidate’s Dissertation in Geology and Mineralogy (Ulan-Ude, 2006).

  4. I. A. Izbrodin, G. S. Ripp, and N. S. Karmanov, “Sulfate-Bearing Apatite of the Kyakhta Sillimanite Deposit (Western Baikal Region),” Zap. Ross. Mineral. O-va 135(2), 71–82 (2006).

    Google Scholar 

  5. J. L. Jambor, “Nomenclature of the Alunite and the Jarosites,” Canad. Miner. 37 1323–1341 (1999).

    Google Scholar 

  6. S. V. Kanakin, N. S. Karmanov, and M. N. Lapina, “Algorithm of Background Calculation in X-Ray Spectral Microanalysis with Wave Dispersion,” in Proceedings of III All-Russia and VI Siberian Conference on the X-Ray Analysis (Irkutsk, 1998), p. 66.

  7. N. S. Karmanov, S. V. Kanakin, and G. S. Ripp, “Study of REE and EPG Minerals with EPMA in Presence of Spectral Superposition,” in Proceedings of All-Russia Scientific Conference on Geology, Geochemistry, and Geophysics on the Turn of XX and XXI Centuries (Russ. Found. Basic Res.-Sib. Branch Russ. Acad. Sci., Irkutsk, 2002), pp. 261–262.

    Google Scholar 

  8. V. V. Khlestov, Candidate’s Dissertation in Geology and Mineralogy (Novosibirsk, 1964), pp. 16–18.

  9. V. V. Khlestov and E. N. Ushakova, “Petrography and Genesis of the Kyakhta Sillimanite Deposit of Buryat ASSR,” in Theoretical and Experimental Mineralogy (Nauka, Novosibirsk, 1963), No. 1, pp. 197–239 [in Russian].

    Google Scholar 

  10. I. I. Lefevre and L. E. Patterson, “Hydrothermal Assemblages at Aluminian Serpentine Florencite and Kyanite in Zairian Copperbelt,” Ann. Soc. Geol. Belg. 105, 51–71 (1982).

    Google Scholar 

  11. R. P. Liferovich, V. N. Yakovenchuk, Ya. A. Pakhomovsky, and A. N. Bogdanova, “Goyazite from Dolomite Carbonatites of the Kovdor Massif,” Zap. Vseross. Mineral. O-va 126(5), 58–65 (1997).

    Google Scholar 

  12. V. A. Makrygina, I. L. Lapides, and B. V. Petrov, “Lazulite in Metamorphosed Rocks of the North Baikal Higland,” in Minerals and Mineral Assemblages of Rocks (Nauka, Leningrad, 1976), pp. 102–107 [in Russian].

    Google Scholar 

  13. R. N. Mil’kevich and N. V. Kotov, “Geology, Polymetamorphism, and Paleothermometry of Metamorphic Rock Complexes from the Unda-Shilka Interfluve (Eastern Baikal Region),” in Magmatism and Metamorphizm (Leningr. State Univ., Leningrad, 1972), Vol. IV, pp. 46–57 [in Russian].

    Google Scholar 

  14. L. E. Mordberg, “Geochemical Evolution of a Devonian Diaspore-Crandallite-Svanbergite-Bearing Weathering Profile in the Middle Timan, Russia,” J. Geoch. Explor. 66, 351–361 (1999).

    Google Scholar 

  15. G. Morteani and D. Ackermand, “Aluminium Phosphates in Muscovite-Kyanite Metaquartzites from Passo di Vizze (Alto Adige, NE Italy),” Eur. J. Mineral. 8, 853–869 (1996).

    Google Scholar 

  16. G. Morteani and D. Ackermand, “Mineralogy and Geochemistry of Al-phosphate and Al-Borosilicate-Bearing Metaquartzites of the Northern Serra do Espinhaco (State of Bahia, Brazil),” Miner. Petrol. 80, 59–81 (2004).

    Article  Google Scholar 

  17. B. Rasmussen, “Early Diagenetic REE-Phosphate Minerals (Florencite, Gorceixite, Crandallite, and Xenotime) in Marine Sandstones; A Major Sink for Oceanic Phosphorus,” Am. J. Sci. 296, 601–632 (1996).

    Google Scholar 

  18. S. A. Repina and N. S. Yuzeeva, “REE and Strontium Al-Phosphate in Crystal-Bearing Veins at the Piramida Deposit, the Subpolar Urals,” Zap. Ross. Mineral. O-va 134(6), 103–110 (2005).

    Google Scholar 

  19. G. S. Ripp, S. V. Kanakin, and M. N. Shcherbakova, “Phosphate Mineralization in Metamorphosed High-Alumina Rocks at the Ichetui Occurrence (Southwestern Transbaikal Region),” Zap. Vseross. Mineral. O-va 127(6), 98–108 (1998).

    Google Scholar 

  20. Ek Roland and P. Nysten, “Phosphate Mineralogy of the Halsjoberg and Hokensas Kyanite Deposits,” Geol. Foren. Stokholm Forhadl., No. 1, 9–18 (1990).

  21. P. Schmid-Beurmann, St. Knitter, and L. Cemic, “P-T Stability of the Lazulite-Scorzalite Solid Solution Series,” Miner. Petrol. 70, 55–71 (2000).

    Article  Google Scholar 

  22. P. Schmid-Beurmann, G. Morteani, and L. Cemic, “Experimental Determination of the Upper Stability of Scorzalite, FeAl2[OH PO4]2, and the Occurrence of Minerals with a Composition Intermediate between Scorzalite and Lazulite(ss) up to Conditions of the Amphibolites Facies,” Miner. Petrol. 61, 211–222 (1997).

    Article  Google Scholar 

  23. Z. D. Sharp, “Oxygen Isotope Geochemistry of the Al2SiO5 Polymorphs,” Am. J. Sci. 295, 1058–1076 (1995).

    Google Scholar 

  24. V. I. Silaev, V. N. Filippov, and M. Yu. Sokerin, “Solid Solutions in Woodhouseite-Svanbergite-Florencite in Secondary Quartzites,” Zap. Vseross. Mineral. O-va 130(1), 99–110 (2001).

    Google Scholar 

  25. M. Ya. Somina and A. G. Bulakh, “Florencite from Carbonatites of the Eastern Sayan and Some Issues of Chemical Constitution of the Cradallite Mineral Group,” Zap. Vsesoyuzn. Mineral. O-va 95(5), 537–550 (1966).

    Google Scholar 

  26. W S. Wise, “Solid Solution between the Alunite, Woodhousite, and Crandallite Mineral Series,” Neues Jb. Miner. Monatsh., No. 12, 540–545 (1975).

  27. W. S. Wise and S. E. Loh, “Equilibria and Origin of Minerals in the System Al2O-AlPO4-H2O,” Am. Miner. 61, 409–413 (1976).

    Google Scholar 

  28. Y.-F. Zheng and K. Simon, “Oxygen Isotope Fractionation in Hematite and Magnetite: A Theoretical Calculation and Application to Geothermometry of Iron Formation,” Eur. J. Miner. 3, 877–886 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Ripp.

Additional information

Original Russian Text © I.A. Izbrodin, G.S. Ripp, N.S. Karmanov, 2009, published in Zapiski RMO (Proceedings of the Russian Mineralogical Society), 2009, Pt. CXXXVII, No. 3, pp. 94–106.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Izbrodin, I.A., Ripp, G.S. & Karmanov, N.S. Phosphate and sulfate-phosphate mineralization in sillimanite-bearing rocks at the Kyakhta deposit, western Transbaikal region. Geol. Ore Deposits 51, 617–626 (2009). https://doi.org/10.1134/S1075701509070101

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701509070101

Keywords

Navigation