Skip to main content
Log in

U-Pb age of zircon from mantle peridotite nodules in Cenozoic alkali basalts of the Vitim Plateau, Transbaikal region

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

The U-Pb (SHRIMP-II) age of zircons from garnet-spinel peridotite nodules in Cenozoic alkali basalts of the Vitim Plateau, Transbaikal region were determined. Most of the zircons are euhedral and subhedral prismatic crystals with an elongation of 1.5–2.0. Fragments of crystals and nearly equant crystals with rounded edges are present as well. Rounded or irregular cores are observed in some grains. None of the zircons yielded an age that would correspond to the time of basalt eruption (21–2.35 Ma or younger). The youngest dates range from 135.2 ± 2.7 Ma to 141 ± 3 Ma (Early Cretaceous). Both concordant values and the lower intersection of discordia with concordia (138.8 ± 5.7 Ma) are within this age interval. The upper intersection corresponds to 1891 ± 26 Ma. A considerable part of the concordant values are grouped within the intervals (164.6 ± 1.6)–(183.4 ± 2.0) and (264.0 ± 7.3)–(295.7 ± 0.76) Ma (Early-Middle Jurassic and Early Permian, respectively). The older concordant values fall in the interval 1462 ± 19 to 1506 ± 4 Ma (Mesoproterozoic). Proterozoic age was obtained for cores of composite zircon grains. Zircons pertaining to all age intervals are enriched in REE relative to chondrite (except La). The chondrite-normalized REE patterns are positively sloped with an increase in contents from LREE to HREE. The LREE and HREE contents and the depth of the Eu minimum tend to increase with age. In composite zircons of Proterozoic age, cores are somewhat enriched in REE. It has been suggested that crystallization of zircon as a separate phase in peridotites extremely depleted in Zr was related to a low degree of partial melting. The melt that formed in the intergranular space and that was repeatedly enriched in Zr was not extracted from the solid framework of rock and crystallized in situ under the changed thermodynamic conditions in the upper mantle. The occurrence of zircons of several age intervals in peridotites testifies to the multistage evolution of the upper mantle and recurrent partial melting under various physicochemical conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. B. Dawson, P. G. Hill, and P. D. Kinny, “Mineral Chemistry of a Zircon-Bearing, Composite, Veined and Metasomatised Upper-Mantle Peridotite Xenoliths from Kimberlite,” Contrib. Miner. Petrol. 140, 720–733 (2001).

    Google Scholar 

  2. G. L. Farmer “Continental Basaltic Rocks,” Treatise on Geochemistry 3, 85–121 (2003).

    Google Scholar 

  3. V. A. Glebovitsky, P. L. Nikitina, V. Ya. Khiltova, and N. O. Ovchinnikov, “The Thermal Regimes of the Upper Mantle beneath Precambrian and Phanerozoic Structures up to the Thermobarometry Data of Mantle Xenoliths,” Lithos 74, 1–26 (2004).

    Article  Google Scholar 

  4. V. A. Glebovitsky, L. P. Nikitina, A. K. Saltykova, Yu. D. Pushkarev, N. O. Ovchinnikov, M. S. Babushkina, and I. V. Ashchepkov, “Thermal and Chemical Heterogeneity of the Upper Mantle beneath the Baikal-Mongolia Territory,” Petrologiya 15(1), 61–92 (2007) [Petrology 15 (1), 58–89 (2007)].

    Google Scholar 

  5. V. A. Glebovitsky, L. P. Nikitina, A. K. Saltykova, N. O. Ovchinnikov, M. S. Babushkina, K. N. Egorov, and I. V. Ashchepkov, “Compositional Heterogeneity of the Continental Lithospheric Mantle beneath the Early Precambrian and Phanerozoic Structures: Evidence from Mantle Xenoliths in Kimberlites and Alkaline Basalts,” Geokhimiya 45(11), 1169–1194 (2007) [Geochem. Int. 45 (11), 1169–1194 (2007)].

    Google Scholar 

  6. V. A. Glebovitsky, L. P. Nikitina, N. O. Ovchinnikov, A. K. Saltykova, K. N. Egorov, and I. V. Ashchepkov, “Geochemistry of Mantle Xenoliths from Kimberlites and Alkaline Basalts As Reflection of Petrological Heterogeneities of Continental Lithospheric Mantle,” in Deep Magmatism and Its Sources, Ed. by N. V. Vladykin (Nauka, Irkutsk, 2005), pp. 135–150 [in Russian].

    Google Scholar 

  7. D. A. Ionov and E. Jagoutz, “Sr and Nd Isotopic Compositions in Minerals of Garnet and Spinel Peridotites-Xenoliths from the Vitim Plateau: The First Data for Mantle Nodules,” Dokl. Akad. Nauk SSSR 301(5), 169–211 (1992).

    Google Scholar 

  8. A. D. Johnston and B. Schwab, “Constrainst on Clinopyroxene/Melt Partitioning of REE, Rb, Sr, Ti, Cr, Zr and Nb during Mantle Melting: First Insight from Peridotite Melting Experiments at 1.0 GPa,” Geochim. Cosmochim. Acta 68(23), 4949–4962 (2004).

    Article  Google Scholar 

  9. P. D. Kinny and J. B. Dawson, “A Mantle Metasomatic Injection Event Linked to Late Cretaceous Kimberlite Magmatism,” Nature 360, 726–728 (1992).

    Article  Google Scholar 

  10. P. D. Kinny and H. O. A. Meyers, “Zircon from the Mantle: A New Way to Date Old Diamonds,” J. Geol. (102), 475–481 (1994).

  11. V. A. Kononova, J. Keller, and V. A. Pervov, “Continental Basaltoid Magmatism and Geodynamic Evolution of the Baikal-Mongolia Region,” Petrologiya 1(2), 152–170 (1993).

    Google Scholar 

  12. J. Konzett, R. A. Armstrong, and D. Gunther, “Modal Metasomatism in the Kaapvaal Mantle Craton Lithosphere: Constrains on Timing and Genesis from U-Pb Zircon Dating of Metasomatized Peridotites and MARID-Type Xenoliths,” Contrib. Miner. Petrol. 139, 704–719 (2000).

    Article  Google Scholar 

  13. J. Konzett, R. A. Armstrong, R. J. Sweeney, and W. Compston, “The Timing of MARID Metasomatism in the Kaapvaal Mantle: An Ion Probe Study Of Zircons from the MARID Xenoliths,” Earth Planet. Sci. Lett. 160, 133–145 (1998).

    Article  Google Scholar 

  14. A. A. Krasnobaev, “Mineralogy of Zircons from Kimberlites and Their Genesis,” Izv. Akad. Nauk SSSR, Ser. Geol., No. 8, 85–96 (1979).

  15. K. R. Ludwig, User’s Manual for ISOPLOT/Ex 3.22, a Geochronological Toolkit for Microsoft Excel (Geochronol. Center Spec. Publ., Berkeley, 2005).

    Google Scholar 

  16. K. R. Ludwig, SQUID 1.13a, a User’s Manual, a Geochronological Toolkit for Microsoft Excel (Geochronol. Center Spec. Publ., Berkeley, 2005).

    Google Scholar 

  17. K. L. Litasov, V. A. Simonov, S. V. Kovyazin, Yu. D. Litasov, and V. V. Sharygin, “Interaction of Mantle Xenolites with Deep Melts from the Data on Melt Inclusions and Interstitial Glasses in Peridotites from Basanites of the Vitim Volcanic Field,” Geol. Geofiz. 44(5), 436–450 (2003).

    Google Scholar 

  18. Le R. W. Maitre, P. Bateman, A. Dudek, et al., A Classification of Igneous Rocks and Glossary (Blackwell, Oxford, 1989).

    Google Scholar 

  19. McDonough and S.-S. Sun, “The Composition of the Earth,” Chem. Geol. 120, 223–253 (1995).

    Article  Google Scholar 

  20. C. B. Ordonez, D. Gebauer, H. J. Schafer, J. I. G. Ibarguchi, and J. J. Peucat, “A Single Devonian Subduction Event for HP/HT Metamorphism of the Cabo Ortegal Complex within the Iberian Massif,” Tectonophysics 332, 359–385 (2001).

    Article  Google Scholar 

  21. H. Palme and H. St. C. O’Neill, “Cosmochemical Estimates of Mantle Composition,” Treatise on Geochemistry 2, 1–38 (2003).

    Article  Google Scholar 

  22. J.A. Pearce, B. W. Harris, and A. G. Tindle, “Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks,” Petrology 25, 956–983 (1984).

    Google Scholar 

  23. D. G. Pearson, G. J. Irvine, D. A. Ionov, F. R. Boyd, and G. E. Dreibus, “Re-Os Isotope Systematic and Platinum Group Element Fractionation during Mantle Melt Extraction: A Study of Massifs and Xenoliths of Peridotite Suites,” Chem. Geol. 208, 29–59 (2004).

    Article  Google Scholar 

  24. P. Peltonen, I. Mantari, H. Huhma, and A. Kontinen, “Archean Zircons from the Mantle: The Jormua Ophiolite Revisited,” Geol. Soc. Am. Bull. 31,(7), P. 645–648 (2003).

    Google Scholar 

  25. Yu. D. Pushkarev, L. P. Nikitina, and V. I. Skiba, “Xenoliths of Primitive Mantle As a Material of MORB Source: Identification, Estimation of Sm-Nd and Rb-Sr Values,” in Deep Magmatism and Its Sources, Ed. by N. V. Vladykin (Nauka, Irkutsk, 2005), pp. 98–115 [in Russian].

    Google Scholar 

  26. P. C. Rickwood. “Boundary Lines within Petrologic Diagrams which Use Oxides of Major and Minor Elements,” Lithos. 22, 247–263 (1989).

    Article  Google Scholar 

  27. R. L. Rudnick, T. R. Ireland, G. Gehrels, A. J. Irving, J. T. Chesley, and J. M. Hanchar, “Dating Mantle Metasomatism: U-Pb Geochronology of Zircons in Cratonic Mantle Xenoliths from Montana and Tanzania,” in Proceedings of 7th International Kimberlite Conference, 1998 (Cape Town, 1999), Vol. 2, pp. 728–735.

    Google Scholar 

  28. L. Sanches-Rodriguez and D. Gebauer, “Mesozoic Formation of Pyroxenites and Gabbros in the Ronda Area (Southern Spain), Followed by Early Miocene Subduction Metamorphism and Emplacement into the Middle Crust: U-Pb Sensitive High-Resolution Ion Microprobe Dating of Zircon,” Tectonophysisc 316, 19–44 (2000).

    Article  Google Scholar 

  29. B. E. Schwab and A. D. Johnston, “Melting Systematic of Modally Variable Compositionally Intermediate Peridotites and the Effects of Mineral Fertility,” J. Petrol. 42(10), 1789–1811 (2001).

    Article  Google Scholar 

  30. H. G. Stosch, G. W. Lugmaair, and V. I. Kovalenko, “Spinel Peridotite Xenoliths from the Tariat Depression, Mongolia. II. Geochemistry and Nd and Sr Isotopic Composition and Their Implications for the Evolution of the Subcontinental Lithosphere,” Geochim. Cosmochim. Acta 50, 2601–2614 (1986).

    Article  Google Scholar 

  31. I. S. Williams, “U-Th-Pb Geochronology by Ion Microprobe,” in Applications in Microanalytical Techniques to Understanding Mineralizing Processes (Rev. Econom. Geol., 1998), Vol. 7, pp. 1–35.

    Google Scholar 

  32. V. V. Yarmolyuk and V. I. Kovalenko, “Late Mesozoic-Cenozoic Intraplate Magmatism in Central and Eastern Asia,” Geol. Geofiz. 36(8), 132–141 (1995).

    Google Scholar 

  33. V. V. Yarmolyuk, V. I. Kovalenko, A. M. Kozlovsky, A. A. Vorontsov, and V. M. Savatenkov, “Late Paleozoic-Early Mesozoic Rift System of Central Asia: Composition and Sources of Magmatism, Formation, and Geodynamics,” in Tectonics of Central Asia, Ed. by M. G. Leonov (Geos, Moscow, 2005), 197–236 [in Russian].

    Google Scholar 

  34. V. V. Yarmolyuk, V. I. Kovalenko, and V. G. Ivanov, “Intraplate Late Mesozoic-Cenozoic Volcanic Province of Central and Eastern Asia: A Projection of Hot Field of the Mantle,” Geotektonika 30(5), 41–67 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.K. Saltykova, L.P. Nikitina, D.I. Matukov, 2009, published in Zapiski RMO (Proceedings of the Russian Mineralogical Society), 2009, Pt. CXXXVII, No. 3, pp. 1–22.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saltykova, A.K., Nikitina, L.P. & Matukov, D.I. U-Pb age of zircon from mantle peridotite nodules in Cenozoic alkali basalts of the Vitim Plateau, Transbaikal region. Geol. Ore Deposits 51, 549–564 (2009). https://doi.org/10.1134/S1075701509070046

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701509070046

Keywords

Navigation