Sources of manganese deposited as oceanic Fe-Mn ore

Abstract

The current concepts of two competing sources of manganese deposited as oceanic Fe-Mn ore are reviewed and assessed critically. A new solution of this problem proposed in this paper is a further development of fundamental works by N.M. Strakhov in the light of new facts and with allowance for geological, geochemical, and geohistorical data. It has been concluded that terrigenous material removed from land serves as a main source of manganese fixed in oceanic Fe-Mn ore. The history of sedimentation and nodule formation in the World Ocean lasted for more than two billion years. Manganese has been supplied to recent bottom sediments from both present-day and older sources. The closed geochemical cycle of Mn circulation in the ocean is intimately related to its circulation in the hydrosphere. Seawater is oversaturated with Mn and serves as its immediate source for ore deposition and elevated concentrations in bottom sediments affected by hydrothermal solutions or other manifestations of endogenic activity. Seawater is a repository for Mn, where this element is retained during global cataclysms, which have repeatedly occurred in geological history.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    O. A. Alekin and L. V. Brazhnikova, External Drainage of Dissolved Substances from the USSR Territory (Nauka, Moscow, 1964) [in Russian].

    Google Scholar 

  2. 2.

    S. I. Andreev, L. I. Anikeeva, A. N. Vishnevskii, et al., “Mineral Resources of the World Ocean, Their Potential and Outlook for Development,” in Geology and Mineral Resources of the World Ocean (VNIIOkeanologiya, St. Petersburg, 1995), pp. 141–157 [in Russian].

    Google Scholar 

  3. 3.

    G. Arrhenius, “Pelagic Sediments,” in The Sea (Interscience, New York, 1963), Vol. 3, pp. 655–727.

    Google Scholar 

  4. 4.

    G. N. Baturin, Geochemistry of Oceanic Ferromanganese Nodules (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  5. 5.

    E. S. Bazilevskaya, Chemical and Mineralogical Study of Manganese Ores (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  6. 6.

    E. S. Bazilevskaya, “Sources of Manganese in the Ocean,” Priroda, No. 3, 25–29 (1980).

  7. 7.

    E. S. Bazilevskaya, “Ocean Floor Metallogeny from Deep-Sea Drilling Data,” in Ocean Floor Geology from Deep-Sea Drilling Data (Nauka, Moscow, 1984), pp. 85–91 [in Russian].

    Google Scholar 

  8. 8.

    E. S. Bazilevskaya, “Contribution of Diagenesis to Ferromanganese Nodule Formation in the Clarion-Clipperton Ore Province,” Tikhookean. Geol. 4(6), 60–70 (1985).

    Google Scholar 

  9. 9.

    E. S. Bazilevskaya, “Asymmetry of Oceanic Ore Formation in Terms of Tectonics,” in Tectonic and Geodynamic Phenomena (Nauka, Moscow, 1997), pp. 70–84 [in Russian].

    Google Scholar 

  10. 10.

    E. S. Bazilevskaya, “Phenomenon of Manganese on the Earth,” Priroda, No. 5, 35–42 (2003).

  11. 11.

    E. S. Bazilevskaya, “New Data on the Fe-Mn Deposition in the Markov Depression (Sierra Leone, Central Atlantic),” Dokl. Akad. Nauk 397(6), 791–796 (2004) [Dokl. Earth Sci. 397A (6), 788 (2004)].

    Google Scholar 

  12. 12.

    E. S. Bazilevskaya and Yu. M. Pushcharovsky, “Oceanic Manganese Accumulation in the Light of Historical Tectonics,” Ross. Zh. Nauk Zemle 1(3), 1–20 (1999).

    Google Scholar 

  13. 13.

    E. S. Bazilevskaya and S. G. Skolotnev, “Tectonic Settings and Fe-Mn Ore Formation in the Central and South Atlantic,” Geol. Rudn. Mestorozhd. 43(4), 308–323 (2001) [Geol. Ore Deposits 43 (4), 274–287 (2001)].

    Google Scholar 

  14. 14.

    Yu. A. Bogdanov, E. G. Gurvich, O. Yu. Bogdanova, et al., “Low-Temperature Deposits in the Logachev Hydrothermal Field (Mid-Atlantic Ridge),” Geol. Rudn. Mestorozhd. 46(4), 313–331 (2004) [Geol. Ore Deposits 46 (4), (2004)].

    Google Scholar 

  15. 15.

    G. W. Bolger, P. R. Betzier, and V. V. Gordeev, “Hydrothermally-Derived Manganese Suspended over the Galapagos Spreading Centre,” Deep-Sea Res. 25(8), 721–733 (1978).

    Google Scholar 

  16. 16.

    G. Yu. Butuzova, Hydrothermal-Sedimentary Ore Formation in the Red Sea Rift Zone (GEOS, Moscow, 1998) [in Russian].

    Google Scholar 

  17. 17.

    G. Charlot and D. Bezier, Quantitative Inorganic Analysis (Wiley, New York, 1957).

    Google Scholar 

  18. 18.

    E. M. Emel’yanov, Barrier Zones in the Ocean: Sedimentation, Ore Deposition, and Geoecology (Yantarnyi Skaz, Kaliningrad, 1998) [in Russian].

    Google Scholar 

  19. 19.

    E. M. Galimov, “Origin and Evolution of the Ocean As Deduced from the 18O/16O Variation in the Earth’s Sedimentary Shell through Geological Time,” Dokl. Akad. Nauk SSSR 299(4), 966–981 (1988).

    Google Scholar 

  20. 20.

    R. Garrels and F. Mackenzie, Evolution of Sedimentary Rocks (Norton, New York, 1971; Mir, Moscow, 1974).

    Google Scholar 

  21. 21.

    V. V. Gordeev, L. L. Demina, and A. M. Konkin, “Hydrothermal Iron and Manganese in Abyssal Waters of the Pacific Ocean (Galapagos Active Zone, Hess Deep),” in Metalliferous Sediments of the Pacific Ocean (Nauka, Moscow, 1979), pp. 224–236 [in Russian].

    Google Scholar 

  22. 22.

    E. G. Gurvich, Metalliferous Sediments of the World Ocean (Nauchnyi Mir, Moscow, 1998) [in Russian].

    Google Scholar 

  23. 23.

    R. Hekinian, B. R. Rosendahl, D. S. Cronan, et al., “Hydrothermal Deposits and Associated Basement Rocks from the Galapagos Spreading Centre,” Oceanological Acta 1(4), 473–482 (1978).

    Google Scholar 

  24. 24.

    R. Horn, Marine Chemistry (Water Structure and Hydrosphere Chemistry) (Mir, Moscow, 1972).

    Google Scholar 

  25. 25.

    S. E. Humphruz, P. M. Herzig, D. J. Miller, et al., “The Internal Structure of an Active Sea-Floor Massive Sulphide Deposit,” Nature 377(6551), 713–717 (1995).

    Google Scholar 

  26. 26.

    Hydrothermal Sulphide Ores and Metalliferous Sediments in the Ocean (Nedra, St. Petersburg, 1992) [in Russian].

  27. 27.

    H. C. Jankins, “Early History of the Oceans,” Oceanus 36(4), 49–50 (1993/1994).

    Google Scholar 

  28. 28.

    K. Kranck, “Flocculation of Suspended Sediment in the Sea,” Nature 246, 348–350 (1973).

    Article  Google Scholar 

  29. 29.

    A. P. Lisitsyn, “Geology of the World Ocean in the Third Millennium—New Approaches, Achievements, and Outlooks,” in New Ideas in Oceanology (Nauka, Moscow, 2005), Vol. 2, pp. 7–66 [in Russian].

    Google Scholar 

  30. 30.

    A. P. Lisitsyn, V. V. Gordeev, L. L. Demina, and V. N. Lukashin, “Manganese Geochemistry in the Ocean,” Izv. Akad. Nauk SSSR, Ser. Geol., No. 3, 3–29 (1985).

  31. 31.

    Metallogenic Map of the World Ocean. Explanatory Notes, Ed. by S. I. Andreev (VNIIOkeangeologiya, St. Petersburg, 1998) [in Russian].

    Google Scholar 

  32. 32.

    J. W. Murray and P. G. Brewer, “Mechanisms of Removal of Manganese, Iron and Other Trace Metals from Sea Water,” in Marine Manganese Deposits (Elsevier, Amsterdam, 1977), pp. 291–325.

    Google Scholar 

  33. 33.

    “Noble Gases Testify to an Ancient Catastrophe,” Priroda, No. 5, 85 (2002).

  34. 34.

    A. P. Nutman, S. J. Mojzsis, and C. R. L. Friend, “Recognition of 3850 Ma Water-Lain Sediments in West Greenland and Their Significance for the Early Archean Earth,” Geochim. Cosmochim. Acta 61(12), 2475–2484 (1997).

    Article  Google Scholar 

  35. 35.

    A. I. Perel’man, Geochemistry of Epigenetic Processes (Nedra, Moscow, 1968) [in Russian].

    Google Scholar 

  36. 36.

    Yu. M. Pushcharovsky, “Major Tectonic Asymmetry of the Earth: Pacific and Indo-Atlantic Segments and Their Relations,” in Tectonic and Geodynamic Phenomena (Nauka, Moscow, 1997), pp. 8–24 [in Russian].

    Google Scholar 

  37. 37.

    D. Schissel and Ph. Aro, “The Major Early Proterozoic Sedimentary Iron and Manganese Deposits and Their Tectonic Setting,” Econ. Geol. 97(5), 1367–1374 (1992).

    Google Scholar 

  38. 38.

    N. S. Skornyakova and I. O. Murdmaa, “Ferromanganese Nodules and Crusts in the Atlantic Ocean,” Litol. Polezn. Iskop. 30(4), 339–361 (1995).

    Google Scholar 

  39. 39.

    N. M. Strakhov, Theoretical Principles of Lithogenesis (Acad. Sci. USSR, Moscow, 1960–1962), Vols. 1–3 [in Russian].

    Google Scholar 

  40. 40.

    N. M. Strakhov, Geochemistry of Modern Oceanic Lithogenesis (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  41. 41.

    A. A. Van der Gissen, “The Structure of Iron (III) Oxide-Hydrate Gels,” J. Inorg. Nucl. Chem. 28, 2155–2159 (1966).

    Google Scholar 

  42. 42.

    V. I. Vernadsky, Selected Works (Nauka, Moscow, 1954), Vol. 1 [in Russian].

    Google Scholar 

  43. 43.

    I. I. Volkov, “Sources of Metals for Modern Ferromanganese Ore Deposition in Oceanic Pelagic Zones,” Litol. Polezn. Iskop. 28(3), 17–40 (1993).

    Google Scholar 

  44. 44.

    I. I. Volkov and L. E. Shterenberg, “Main Types of Ferromanganese Ores in Modern Water Basins,” Litol. Polezn. Iskop. 16(5), 4–26 (1981).

    Google Scholar 

  45. 45.

    D. L. Williams, K. Green, T. H. Van Andel, et al., “The Hydrothermal Mounds of the Galapagos Rift Observation with DSRV Alvin and Detailed Heat Flow Studies,” J. Geophys. Rs. 84(1313), 7467–7482 (1979).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. S. Bazilevskaya.

Additional information

Original Russian Text © E.S. Bazilevskaya, 2006, published in Geologiya Rudnykh Mestorozhdenii, 2006, Vol. 48, No. 2, pp. 155–166.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bazilevskaya, E.S. Sources of manganese deposited as oceanic Fe-Mn ore. Geol. Ore Deposits 48, 134–143 (2006). https://doi.org/10.1134/S1075701506020036

Download citation

Keywords

  • Nodule
  • Manganese
  • Sedimentation
  • Mineral Resource
  • Bottom Sediment