Skip to main content
Log in

Geochemistry and origin of the ore-forming fluids in hydrothermal-magmatic systems in tectonically active zones

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

Data on fluid inclusions and stable isotope compositions (O, H, C, and S) in minerals have been summarized for large-and middle-scale mesothermal gold deposits (Nezhdaninsk, Berezovsk, Kochkar’, Svetlinsk, Darasun, and Maisk), cassiterite-silicate-sulfide deposits of Sikhote Alin (Solnechnoe, Arsen’evsk, and Vysokogorsk), vein silver-base metal deposits in the Southern Verkhoyansk region (Prognoz and Kupol’noe), and epithermal copper-bismuth-silver-base metal deposits of the Karamazar district in Tajikistan (Kanimansur, Tary Ekan, and Zambarak). It is shown that ores precipitated from fluids with salinity varying from brines (up to 60 wt % NaCl equiv) to dilute fluids (1–3 wt % NaCl equiv). As a rule, fluids of different compositions entered the hydrothermal-magmatic system. A fluid mixture of H2O-CO2-NaCl±CH4±N2 predominated in the orogenic (mesothermal) gold-bearing hydrothermal systems, with deposition of the final-stage gold-bearing sulfosalts from aqueous-salt fluid. Brines played a significant role in the formation of cassiterite-silicate-sulfide and vein silver-base metal deposits. The brines often coexisted with a low-density vapor-rich fluid at the ore deposition site. The obtained data suggest a predominant magmatic component in the hydrothermal-magmatic systems, with a significant contribution of meteoric waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Yu. Anikina, N. S. Bortnikov, and G. N. Gamyanin, “Rhythmical and Banded Veins at Silver-Lead-Zinc Deposits of the Kolyma-Verkhoyansk Fold Belt. Russia: Implications for Fluid Boiling,” in Mineral Exploration and Sustainable Development (Milpress, Rotterdam, 2003).

    Google Scholar 

  2. A. Audetat, D. Gunther, and C.A. Heinrich, “Magmatic-Hydrothermal Evolution in a Fractionating Granite: A Microchemical Study of the Sn-W-F-Mineralized Mole Granite (Australia)”, Geochim. Cosmochim. Acta 64, 3373 (2000).

    Google Scholar 

  3. R. J. Bodnar, T. J. Reynolds, and C. A. Kuehn, “Fluid Inclusion Systematics in Epithermal Systems,” in Geology and Geochemistry of Epithermal Systems (Econ. Geol, El Pasco), pp. 73–97 (1984).

    Google Scholar 

  4. A. S. Borisenko, “Cryometric Study of Salt Composition in Gas-Liquid Inclusions in Minerals,” Geol. Geofiz., No. 8, 16–27 (1977).

  5. N. S. Bortnikov, I. A. Bryzgalov, N. N. Krivitskaya, et al., “The Maiskoe Multimegastage Disseminated Gold-Sulfide Deposit-(Chukotka, Russia): Mineralogy, Fluid Inclusions, Stable Isotopes (O and S), History, and Conditions of Formation,” Geol. Rudn. Mestorozhd. 46(6), 475–509 (2004) [Geol. Ore Dep. 46 (6), 409 (2004)].

    Google Scholar 

  6. N. S. Bortnikov, G. N. Gamyanin, V. A. Alpatov, et al., “Mineralogy, Geochemistry and Origin of the Nezhdaninsk Gold Deposit (Sakha-Yakutia, Russia),” Geol. Rudn. Mestorozhd. 40(2), 137–156 (1998) [Geol. Ore Dep. 40 (2), 121 (1998)].

    Google Scholar 

  7. N. S. Bortnikov, A. I. Khanchuk, T. L. Krylova, et al., “Geochemistry of the Mineral-Forming Fluids in Some Tin Ore Hydrothermal Systems of Sikhote Alin, Russian Far East,” Geol. Rudn. Mestorozhd. 47(5), (2005) [in press].

  8. N. S. Bortnikov, V. Yu. Prokof’ev, and N. V. Razdolina, “Environment of Ore Deposition in the Charmitan Gold Vein Deposit, Nurata Mountains, Usbekistan, USSR,” in Proceedings of 29th International Geological Congress, Kyoto, Japan, 1992 (Kyoto, 1992), Vol. 3, p. 748.

    Google Scholar 

  9. N. S. Bortnikov, V. Yu. Prokof’ev, and N. V. Razdolina, “Origin of the Charmitan Gold-Quartz Deposit (Uzbekistan),” Geol. Rudn. Mestorozhd. 38(3), 238–257 (1996) [Geol. Ore Dep. 38 (3), 208 (1996)].

    Google Scholar 

  10. N. S. Bortnikov, V. N. Sazonov, I. V. Vikent’ev, et al., “Role of the Magmatogenic Fluid in the Formation of the Mesothermal Berezov Gold-Quartz Deposit,” Dokl. Ross. Akad. Nauk 363(1), 82–85 (1999) [Dokl. Earth Sci. 363 (8), 1078 (1998)].

    Google Scholar 

  11. N. S. Bortnikov, V. N. Sazonov, I. V. Vikent’ev, et al., “The Berezovsk Giant Gold Quartz Deposit, Urals, Russia: Fluid Inclusion and Stable Isotope Studies,” in Mineral Deposits: Research and Exploration—Where Do They Meet? (Balkema, Rotterdam, 1997), pp. 157–160.

    Google Scholar 

  12. N. S. Bortnikov, M. I. Stolyarov, V. V. Murzin, et al., “The Svetlinsk Gold-Telluride Deposit, Urals, Russia: Mineral Paragenesis, Fluid Inclusion, and Stable Isotope Studies,” Mineral Deposits: Processes to Processing (London, 1999), pp. 21–24.

  13. T. S. Bowers, “The Deposition of Gold and Other Metals. Pressure-Induced Fluid Immiscibility and Associated Stable Isotope Signatures,” Geochim. Cosmochim. Acta 55(9), 2417–2434 (1991).

    Article  Google Scholar 

  14. P. A. Candela and P. M. Piccoli, “Model Ore-Metal Partitioning from Melts into Vapor and Vapor/Brine Mixtures,” in Magmas, Fluids, and Ore Deposits, Mineral. Assoc. Can. Short Course Ser. 23, 101–127 (1995).

  15. C. W. Field and R. N. Fifarek, “Light Stable-Isotope Systematics in the Epithermal Environment,” Geology and Geochemistry of Epithermal Systems (Econ. Geol., El Pasco), pp. 99–128 (1985).

    Google Scholar 

  16. B. L. Flerov, “Tin-Base Metal Ore Mineralization of Southeastern Yakutia,” in Geology, Mineralogy of the Ore Clusters of the Yana-Kolyma Fold Belt (YaF SO AN SSSR, Yakutsk, 1984), pp. 6–21 [in Russian].

    Google Scholar 

  17. R. O. Fournier, “Conceptual Models of Brine Evolution in Magmatic-Hydrothermal Systems,” US Geol. Surv. Prof. Paper 1350, 1487–1506 (1987).

    Google Scholar 

  18. G. N. Gamyanin, E. Yu. Anikina, N. S. Bortnikov, et al., “The Prognoz Silver-Polymetallic Deposit, Sakha (Yakutia): Chemistry and Zoning of Ore Veins,” Geol. Rudn. Mestorozhd. 45(6), 531–546 (2003) [Geol. Ore Dep. 45 (6), 466 (2003)].

    Google Scholar 

  19. G. N. Gamyanin, E. Yu. Anikina, N. S. Bortnikov, et al., “The Prognoz Silver-Polymetallic Deposit, Sakha (Yakutia): Mineralogy, Geochemistry, and Origin,” Geol. Rudn. Mestorozhd. 40(5), 440–458 (1998) [Geol. Ore Dep. 40 (5), 391 (1998)].

    Google Scholar 

  20. G. N. Gamyanin, N. S. Bortnikov, V. V. Alpatov, et al., “The Kupol’noe Silver-Tin Deposit (Sakha Republic, Russia): An Example of the Evolution of an Ore-Magmatic System,” Geol. Rudn. Mestorozhd. 43(6), 495–523 (2001) [Geol. Ore Dep. 43 (6), 442 (2001)].

    Google Scholar 

  21. D. I. Groves, K. C. Condie, R. J. Goldfarb, et al., “Secular Changes in Global Tectonic Processes and Their Influence on the Temporal Distribution of Gold-Bearing Mineral Deposits,” Econ. Geol. 100, 203–224 (2005).

    Article  Google Scholar 

  22. D. I. Groves, R. J. Goldfarb, M. Gebre-Mariam, et al., “Orogenic Gold Deposits: A Proposed Classification in the Context of Their Crustal Distribution and Relationship to Other Gold Deposit Types,” Ore Geol. Rev. 13, 7–27 (1998).

    Article  Google Scholar 

  23. S. G. Hageman and K. F. Cassidy, “Archean Orogenic Lode Deposits,” in Gold in 2000, Rev. Econ. Geol. 13, 9–68 (2000).

  24. D. O. Hayba, P. M. Bethke, P. Heald, et al., “Geologic, Mineralogic, and Geochemical Characteristics of Volcanic Hosted Epithermal Precious Metal Deposits,” in Geology and Geochemistry of Epithermal Systems, Ed. by B. R. Berger and P. M. Bethke, Rev. Econ. Geol. 2, 129–167 (1985).

  25. J. W. Hedenquist and J. B. Lowenstern, “The Role of Magmas in the Formation of Hydrothermal Ore Deposits,” Nature, 519–527 (1994).

  26. J. W. Hedenquist, A. Arribas, Jr. and T. J. Reynolds, “Evolution of an Intrusion-Centred Hydrothermal System: Far Southeast-Lepanto Porphyry and Epithermal Cu-Au Deposits, Philippines,” Econ. Geol. 93, 373–404 (1998).

    Google Scholar 

  27. C. A. Heinrich, “Geochemical Evolution and Hydrothermal Mineral Deposition in Sn (-W-Base Metal) and Other Granite-Related Ore Systems: Some Conclusions from Australian Examples,” in Magmas, Fluids, and Ore Deposits, Mineral. Assoc. Can. Short Course Ser. 23, 203–220 (1995).

  28. R. W. Henley and A. McNabb, “Magmatic Vapor Plumes and Ground Water Interactions in Porphyry Copper Emplacement,” Econ. Geol. 73, 1–20 (1978).

    Google Scholar 

  29. R. Kerrich, “Mesothermal Gold Deposits: A Critique of Genetic Hypotheses,” in Greenstone Gold and Crustal Evolution, Ed. by F. Robert, P. A. Sheahan, and S. B. Green, Geol. Assoc. Can., 13–31 (1990).

  30. Y. Kiyoshu and M. Kurahashi, “Origin of Sulfur Species in Acid Sulfate-Chloride Thermal Waters, Northeastern Japan,” Geochim. Cosmochim. Acta 47, 1237–1245 (1983).

    Google Scholar 

  31. J. B. Lowenstern, “Applications of Silicate Melt Inclusions to the Study of Magmatic Volatiles,” in Magmas, Fluids, and Ore Deposits, Min. Assoc. Can. 23, 71–99 (1995).

  32. S. S. Matveeva, M. Yu. Spasennykh, T. M. Sushchevskaya, et al., “Geochemical Model of the Formation of the Spokoininsk Tungsten Deposit (Eastern Transbaikal Region, Russia),” Geol. Rudn. Mestorozhd. 44(2), 125–147 (2002) [Geol. Ore Dep. 44 (2), 111 (2002)].

    Google Scholar 

  33. I. Ya. Nekrasov, “Primary Magmatic Zoning in Ore Deposits of North Eastern Yakutia and Its Significance for Search of Hidden Ore Bodies,” in Problems of Study and Methods of Search for Concealed Mineralization (Gosgeoltekhizdat, Moscow, 1963), pp. 314–334 [in Russian].

    Google Scholar 

  34. H. Ohmoto and R. O. Rye, “Isotopes of Sulfur and Carbon”, in Geochemistry of Hydrothermal Deposits (Willey, New York, 1979), pp. 509–567.

    Google Scholar 

  35. H. Ohmoto, “Stable Isotope Geochemistry of Ore Deposits,” Rev. Mineral. 16, 491–560 (1986).

    Google Scholar 

  36. L. M. Parfenov, “Terranes and Evolution of the Mesozoic Orogenic Belts of Eastern Yakutia,” Tikhookean. Geol. 14(6), 32–43 (1995).

    Google Scholar 

  37. V. Yu. Prokof’ev, N. S. Bortnikov, and L. D. Zorina, “Genetic Features of the Darasun Gold-Sulfide Deposit (Eastern Transbaikal Region),” Geol. Rudn. Mestorozhd. 42(6), 526–548 (2000) [Geol. Ore Dep. 42 (6), 474 (2000)].

    Google Scholar 

  38. J. R. Ridley and L. W. Dimond, “Fluid Chemistry of Orogenic Lode Gold Deposits and Implication for Genetic Models,” in Gold in 2000, Rev. Econ. Geol. 13, 141–162 (2000).

  39. E. Roedder, Fluid Inclusions (Mineral. Soc. Am., Washington, 1984).

    Google Scholar 

  40. I. D. Ryabchikov, Thermodynamics of Fluid Phase of the Granitoid Magma (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  41. Yu. G. Safonov, N. S. Bortnikov, T. M. Zlobina, et al., “Polymetal (Ag, Pb, U, Cu, Bi, Zn, F) Adrasman-Kanimansur Ore Field (Tajikistan) and Its Ore-Forming System. I: Geology, Mineralogy, and Structural Conditions of the Ore Deposition,” Geol. Rudn. Mestorozhd. 42(3), 195–211 (2000a) [Geol. Ore Dep. 42 (3), 175 (2000a)].

    Google Scholar 

  42. Yu. G. Safonov, N. S. Bortnikov, T. M. Zlobina, et al., “Polymetal (Ag, Pb, U, Cu, Bi, Zn, F) Adrasman-Kanimansur Ore Field, and Its Ore-Forming System, II: Physicochemical, Geochemical, and Geodynamic Formation Conditions,” Geol. Rudn. Mestorozhd. 42(4), 350–362 (2000b) [Geol. Ore Dep. 42 (4), 317 (2000b)].

    Google Scholar 

  43. K. L. Shelton and D. M. Rye, “Sulfur Isotopic Compositions of Ores from Mines Gaspe, Quebec: An Example of Sulfate-Sulfide Disequilibria in Ore-Forming Fluids with Applications to Other Porphyry-Type Deposits,” Econ. Geol. 77, 1688–1709 (1982).

    Google Scholar 

  44. S. M. F. Sheppard, “Characterization and Isotopic Variations in Natural Waters,” in Stable Isotopes in High Temperature Geological Processes, Rev. Mineral. 16, 165–183 (1986).

  45. H. Shinohara and J. W. Hedenquist, “Constraints on Magma Degassing Beneath the Far Southeast Porphyry Cu-Au Deposit, Philippines,” J. Petrol. 38, 1741–1752 (1997).

    Article  Google Scholar 

  46. H. Shinohara, “Exsolution of Immiscible Vapor and Liquid Phases from a Crystallizing Silicate Melt: Implications for Chlorine and Metal Transport,” Geochim. Cosmochim. Acta 58(23), 5215–5222 (1994).

    Article  Google Scholar 

  47. M. Yu. Spasennykh, V. M. Shmonov, T. M. Sushchevskaya, et al., “Percolation of Hydrothermal Fluids through the Rocks Hosting the Iultin Deposit, Chukchi Peninsula: Evidence from the Oxygen Isotopic Composition and Rock Permeability,” Geokhimiya, No. 6, 626–638 (2002) [Geochem. Int. 40 (6), 564–575 (2002)].

  48. B. E. Taylor, “Magmatic Volatiles: Isotopic Variations of C, H, and S”, in Stable Isotopes in High-Temperature Processes, Rev. Mineral. 16, 185–225 (1986).

  49. J. L. Walshe, S. W. Halley, J. A. Anderson, et al., “The Interplay of Groundwater and Magmatic Fluids in the Formation of the Cassiterite-Sulfide Deposits of Western Tasmania”, Ore Geol. Rev. 10, 367–387 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Bortnikov.

Additional information

Original Russian Text © N.S. Bortnikov, 2006, published in Geologiya Rudnykh Mestorozhdenii, 2006, Vol. 48, No. 1, pp. 3–28.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bortnikov, N.S. Geochemistry and origin of the ore-forming fluids in hydrothermal-magmatic systems in tectonically active zones. Geol. Ore Deposits 48, 1–22 (2006). https://doi.org/10.1134/S1075701506010016

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701506010016

Keywords

Navigation