Skip to main content
Log in

Efficient Silica-OSO3H (SSA)-Catalyzed One-Pot Multicomponent Synthesis of 1,2,4,5-Tetrasubstituted 1H-Imidazoles: Molecular Docking, Antibacterial Activity, and Plausible Mechanism

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

A series of polysubstituted imidazoles were synthesized in good yields by employing stable and active silica-OSO3H catalyst via a one-pot four-component approach. This new protocol has the advantages of inexpensive, nontoxic, and heterogeneous catalyst along with mild reaction conditions, short reaction times, and easy workup and purification procedures, which enhance its practicality. The synthesized imidazoles were subjected to molecular docking with some bacterial target enzymes (PDB IDs: 1KZN, 1BAG, 1D7U, 2XCT). Compounds 1k, 1e, 1o, and 1i showed the best docking scores on selected targets, –8.2, –8.4, –8.5, and –9.3 kcal/mol, respectively. Antibacterial evaluation of the synthesized compounds against S. aureus, B. subtilis, E. coli, and K. pneumoniae revealed their potential activity with MIC values of 64 to 100 µg/mL. Imidazoles containing another heterocyclic unit such as pyridyl or thienyl (1d, 1f, 1h, and 1m) showed better antibacterial activity than other analogues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Zheng, X., Ma, Z., and Zhang, D., Pharmaceuticals, 2020, vol. 13, article no. 37. https://doi.org/10.3390/ph13030037

  2. Siwach, A. and Verma, P.K., BMC Chem., 2021, vol. 15, article no. 12. https://doi.org/10.1186/s13065-020-00730-1

  3. Moosavi-Zare, A.R., Asgari, Z., Zare, A., Zolfigol, M.A., and Shekouhy, M., RSC Adv., 2014, vol. 4, p. 60636. https://doi.org/10.1039/C4RA10589C

    Article  CAS  Google Scholar 

  4. Marques, M.V., Ruthner, M.M., Fontoura, L.A.M., and Russowsky, D., J. Braz. Chem. Soc., 2012, vol. 23, p. 171. https://doi.org/10.1590/S0103-50532012000100024

    Article  CAS  Google Scholar 

  5. Puratchikody, A. and Doble, M., Bioorg. Med. Chem., 2007, vol. 15, p. 1083. https://doi.org/10.1016/j.bmc.2006.10.025

    Article  CAS  PubMed  Google Scholar 

  6. Üstün, E., Özgür, A., Coşkun, K.A., Demir, S., Özde­mir, İ., and Tutar, Y., J. Coord. Chem., 2016, vol. 69, p. 3384. https://doi.org/10.1080/00958972.2016.1231921

    Article  CAS  Google Scholar 

  7. Ali, I., Lone, M.N., and Aboul-Enein, H.Y., MedChemComm, 2017, vol. 8, p. 1742. https://doi.org/10.1039/c7md00067g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Narasimhan, B., Sharma, D., Kumar, P., Yogeeswari, P., and Sriram, D., J. Enzyme Inhib. Med. Chem., 2011, vol. 26, p. 720. https://doi.org/10.3109/14756366.2010.548331

    Article  CAS  PubMed  Google Scholar 

  9. Sharma, D., Narasimhan, B., Kumar, P., Judge, V., Narang, R., De Clercq, E., and Balzarini, J., Eur. J. Med. Chem., 2009, vol. 44, p. 2347. https://doi.org/10.1016/j.ejmech.2008.08.010

    Article  CAS  PubMed  Google Scholar 

  10. Rani, N., Sharma, A., and Singh, R., Mini-Rev. Med. Chem., 2013, vol. 13, p. 1812. https://doi.org/10.2174/13895575113136660091

    Article  CAS  PubMed  Google Scholar 

  11. Verma, A., Joshi, S., and Singh, D., J Chem., 2013, vol. 2013, article ID 329412. https://doi.org/10.1155/2013/329412

  12. Li, J., Kaoud, T.S., Laroche, C., Dalby, K.N., and Kerwin, S.M., Bioorg. Med. Chem. Lett., 2009, vol. 19, p. 6293. https://doi.org/10.1016/j.bmcl.2009.09.094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Laufer, S., Hauser, D., Stegmiller, T., Bracht, C., Ruff, K., Schattel, V., Albrecht, W., and Koch, P., Bioorg. Med. Chem. Lett., 2010, vol. 20, p. 6671. https://doi.org/10.1016/j.bmcl.2010.09.012

    Article  CAS  PubMed  Google Scholar 

  14. Doman, T.N., McGovern, S.L., Witherbee, B.J., Kasten, T.P., Kurumbail, R., Stallings, W. C., Con­nolly, D.T., and Shoichet, B.K., J. Med. Chem., 2002, vol. 45, p. 2213. https://doi.org/10.1021/jm010548w

    Article  CAS  PubMed  Google Scholar 

  15. Weinstein, D.S., Liu, W., Ngu, K., Langevine, C., Combs, D.W., Zhuang, S., Chen, C., Madsen, C.S., Harper, T.W., and Robl, J.A., Bioorg. Med. Chem. Lett., 2007, vol. 17, p. 5115. https://doi.org/10.1016/j.bmcl.2007.07.011

    Article  CAS  PubMed  Google Scholar 

  16. Sarshar, S., Zhang, C., Moran, E.J., Krane, S., Rodarte, J.C., Benbatoul, K.D., Dixon, R., and Mjalli, A.M.M., Bioorg. Med. Chem. Lett., 2000, vol. 10, p. 2603. https://doi.org/10.1016/S0960-894X(00)00521-7

    Article  PubMed  Google Scholar 

  17. de Laszlo, S.E., Hacker, C., Li, B., Kim, D., Mac­Coss, M., Mantlo, N., Pivnichny, J.V, Colwell, L., Koch, G.E., Cascieri, A., and Hagmann, W.K., Bioorg. Med. Chem. Lett., 1999, vol. 9, p. 641. https://doi.org/10.1016/S0960-894X(99)00081-5

    Article  CAS  PubMed  Google Scholar 

  18. Pierce, M.E., Carini, D.J., Huhn, G.F., Wells, G.J., and Arnett, J.F., J. Org. Chem., 1993, vol. 58, p. 4642. https://doi.org/10.1021/jo00069a029

    Article  CAS  Google Scholar 

  19. Teimouri, A. and Najafi, A., J. Mol. Catal. A: Chem., 2011, vol. 346, p. 39. https://doi.org/10.1016/j.molcata.2011.06.007

    Article  CAS  Google Scholar 

  20. Mirjalili, B.F., Bamoniri, A.H., and Zamani, L., Sci. Iran., 2012, vol. 19, p. 565. https://doi.org/10.1016/j.scient.2011.12.013

    Article  CAS  Google Scholar 

  21. Safari, J., Gandomi-Ravandi, S., and Akbari, Z., J. Adv. Res., 2013, vol. 4, p. 509. https://doi.org/10.1016/j.jare.2012.09.001

    Article  PubMed  Google Scholar 

  22. Safa, K.D., Allahvirdinesbat, M., and Namazi, H., Synth. Commun., 2015, vol. 45, p. 1205. https://doi.org/10.1080/00397911.2015.1009552

    Article  CAS  Google Scholar 

  23. Arghan, M., Koukabi, N., and Kolvari, E., J. Iran. Chem. Soc., 2019, vol. 16, p. 2333. https://doi.org/10.1007/s13738-019-01700-8

    Article  CAS  Google Scholar 

  24. Borhade, A.V., Tope, D.R., and Gite, S.G., Arab. J. Chem., 2017, vol. 10, p. S559. https://doi.org/10.1016/j.arabjc.2012.11.001

  25. Safari, J., Naseh, S., Zarnegar, Z., and Akbari, Z., J. Taibah Univ. Sci., 2014, vol. 8, p. 323. https://doi.org/10.1016/j.jtusci.2014.01.007

    Article  Google Scholar 

  26. Nejatianfar, M., Akhlaghinia, B., and Jahanshahi, R., Appl. Organomet. Chem., 2018, vol. 32, article ID e4095. https://doi.org/10.1002/aoc.4095

  27. Singh, H. and Rajput, J.K., Appl. Organomet. Chem., 2018, vol. 32, article ID e3989. https://doi.org/10.1002/aoc.3989

  28. Thwin, M., Mahmoudi, B., Ivaschuk, O.A., and Yousif, Q.A., RSC Adv., 2019, vol. 9, p. 15966. https://doi.org/10.1039/c9ra02325a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zarnegar, Z. and Safari, J., New J. Chem., 2014, vol. 38, p. 4555. https://doi.org/10.1039/c4nj00645c

    Article  CAS  Google Scholar 

  30. Arafa, W.A.A., RSC Adv., 2018, vol. 8, p. 16392. https://doi.org/10.1039/c8ra02755b

    Article  CAS  Google Scholar 

  31. Das, P.J., Das, J., Ghosh, M., and Sultana, S., Green Sustainable Chem., 2013, vol. 3, p. 6. https://doi.org/10.4236/gsc.2013.34a002

    Article  Google Scholar 

  32. Akbari, A., Tetrahedron Lett., 2016, vol. 57, p. 431. https://doi.org/10.1016/j.tetlet.2015.12.053

    Article  CAS  Google Scholar 

  33. Davoodnia, A., Heravi, M.M., Safavi-Rad, Z., and Tavakoli-Hoseini, N., Synth. Commun., 2010, no. 40, p. 2588. https://doi.org/10.1080/00397910903289271

    Article  CAS  Google Scholar 

  34. Khandebharad, A.U., Sarda, S.R., Gill, C., and Brijmo­han, R., Org. Prep. Proced. Int., 2020, vol. 52, p. 524. https://doi.org/10.1080/00304948.2020.1804773

    Article  CAS  Google Scholar 

  35. Zhang, F., Gao, Q., Chen, B., Bai, Y., Sun, W., Lv, D., and Ge, M., Phosphorus, Sulfur Silicon Relat. Elem., 2016, vol. 191, p. 786. https://doi.org/10.1080/10426507.2015.1100184

    Article  CAS  Google Scholar 

  36. Naureen, S., Ijaz, F., Nazeer, A., Chaudhry, F., Muna­war, M.A., and Khan, M.A., Synth. Commun., 2017, vol. 47, p. 1478. https://doi.org/10.1080/00397911.2017.1332766

    Article  CAS  Google Scholar 

  37. Munsur, A.Z.A., Roy, H.N., and Imon, M.K., Arab. J. Chem., 2020, vol. 13, p. 8807. https://doi.org/10.1016/j.arabjc.2020.10.010

    Article  CAS  Google Scholar 

  38. Khan, K. and Siddiqui, Z.N., Ind. Eng. Chem. Res., 2015, vol. 54, p. 6611. https://doi.org/10.1021/acs.iecr.5b00511

    Article  CAS  Google Scholar 

  39. Parthiban, D., and Karunakaran, R.J., Orient. J. Chem., 2018, vol. 34, p. 3004. https://doi.org/10.13005/ojc/340642

    Article  CAS  Google Scholar 

  40. Bansal, R., Soni, P.K., and Halve, A.K., J. Heterocycl. Chem., 2018, vol. 55, p. 1308. https://doi.org/10.1002/jhet.3160

    Article  CAS  Google Scholar 

  41. Bhadrachar, S., Vijayakumar, G.R., Mahadevan, K.M., and Basavaraja, T., Asian J. Chem., 2019, vol. 31, p. 2448. https://doi.org/10.14233/ajchem.2019.22107

    Article  CAS  Google Scholar 

  42. Esmaeilpour, M., Javidi, J., Dehghani, F., and Zahmat­kesh, S., Res. Chem. Intermed., 2017, vol. 43, p. 163. https://doi.org/10.1007/s11164-016-2613-9

    Article  CAS  Google Scholar 

  43. Ren, Y.M. and Cai, C., Adv. Mater. Res., 2012, vols. 396–398, p. 1871. https://doi.org/10.4028/www.scientific.net/AMR.396-398.1871

    Article  CAS  Google Scholar 

  44. Khoshneviszadeh, M. and Mahdavi, M., Arkivoc, 2017, vol. 2017, part (iv), p. 343. https://doi.org/10.24820/ark.5550190.p010.039

    Article  CAS  Google Scholar 

  45. Kerru, N., Gummidi, L., Bhaskaruni, S.V.H.S., Narayana, S., and Jonnalagadda, S.B., Mol. Diversity, 2020, vol. 24, p. 889. https://doi.org/10.1007/s11030-019-10000-5

    Article  CAS  Google Scholar 

  46. Patel, G., Patel, A.R., and Banerjee, S., New J. Chem., 2020, vol. 44, p. 13295. https://doi.org/10.1039/d0nj02527e

    Article  CAS  Google Scholar 

  47. Gurav, S.S., Waghmode, K.T., Lotlikar, O.A., Dande­kar, S.N., and Jadhav, S.R., Org. Prep. Proced. Int., 2022, vol. 54, p. 556. https://doi.org/10.1080/00304948.2022.2090221

    Article  CAS  Google Scholar 

  48. Reddy, B.P., Vijayakumar, V., Arasu, M.V., and Al-Dhabi, N.A., Molecules, 2015, vol. 20, p. 19221. https://doi.org/10.3390/molecules201019221

    Article  CAS  PubMed  Google Scholar 

  49. Kohan, E., Gholamhosseini-Nazari, M., Allahvirdines­bat, M., and Alemi, A.A., Inorg. Nano-Met. Chem., 2021, vol. 51, p. 1036. https://doi.org/10.1080/24701556.2020.1814327

    Article  CAS  Google Scholar 

  50. Abdullayev, Y.A., Abbasov, V.M., Talybova, A.H., Tagizade, Z.Y., Kochetkov, K.A., Marzouk, A.A., and Akhmadov, S.Z., Processes Petrochem. Oil Refin., 2017, vol. 18, p. 69.

    Google Scholar 

  51. Emtiazi, H., Amrollahi, M.A., and Mirjalili, B.B.F., Arab. J. Chem., 2015, vol. 8, no. 6, p. 793. https://doi.org/10.1016/j.arabjc.2013.06.008

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Gurav.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurav, S.S., Jadhav, S.R., Mali, S.N. et al. Efficient Silica-OSO3H (SSA)-Catalyzed One-Pot Multicomponent Synthesis of 1,2,4,5-Tetrasubstituted 1H-Imidazoles: Molecular Docking, Antibacterial Activity, and Plausible Mechanism. Russ J Org Chem 60, 530–538 (2024). https://doi.org/10.1134/S1070428024030229

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428024030229

Keywords:

Navigation