Skip to main content
Log in

Green Synthesis and Biological Evaluation of Some 1,2,4-Triazol-3-ones

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

A series of 1,2,4-triazol-3-one derivatives were synthesized by using conventional heating and microwave irradiation techniques. Microwave syntheses of the target compounds were carried out by using both a domestic microwave oven and a monomode microwave reactor. The results showed that the use of microwave technique is advantageous in terms of time, low solvent loading, yield, and efficiency. The synthesized compounds were tested for their antioxidant and antiurease activities. The antioxidant activity was evaluated by using ABTS [2,2′-azinobis(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt] radical scavenging and cupric ion reducing antioxidant capacity (CUPRAC) methods. Most of the compounds showed good antioxidant activity, especially compound 8d showed an SC50 value of 71.062±9.31 μM in comparison to Trolox used as standard (SC50 = 210.04±16.22 μM). According to the urease inhibitory activity results, most of the compounds showed better activity than thiourea (IC50 = 0.5027±0.0293 μM); in particular, compound 8a exhibited an IC50 value of 0.3070±0.0394 μM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme

REFERENCES

  1. Kappe, C.O., Angew. Chem., Int. Ed., 2004, vol. 43, p. 6250. https://doi.org/10.1002/anie.200400655

    Article  CAS  Google Scholar 

  2. Kappe, C.O. and Dallinger, D., Nat. Rev. Drug Discovery, 2006, vol. 5, p. 51. https://doi.org/10.1038/nrd1926

    Article  CAS  PubMed  Google Scholar 

  3. Kahveci, B., Yilmaz, F., Menteşe, E., and Beriş, F.Ş., J. Chem. Res., 2012, vol. 36, p. 484. https://doi.org/10.3184/174751912X13400138806685

    Article  CAS  Google Scholar 

  4. Özil, M., Emirik, M., Etlik, S.Y., Ülker, S., and Kahveci, B., Bioorg. Chem., 2016, vol. 68, p. 226. https://doi.org/10.1016/j.bioorg.2016.08.011

    Article  CAS  PubMed  Google Scholar 

  5. Özil, M., Menteşe, E., Yilmaz, F., Islamoǧlu, F., and Kahveci, B., J. Chem. Res., 2011, vol. 35, p. 268. https://doi.org/10.3184/174751911X13043524455143

    Article  CAS  Google Scholar 

  6. Kahveci, B., Yilmaz, F., Menteşe, E., and Ülker, S., Chem. Heterocycl. Compd., 2015, vol. 51, p. 447. https://doi.org/10.1007/s10593-015-1714-5

    Article  CAS  Google Scholar 

  7. Kahveci, B., Özil, M., Menteşe, E., Bekircan, O., and Buruk, K., Russ. J. Org. Chem., 2008, vol. 44, p. 1816. https://doi.org/10.1134/S1070428008120178

    Article  CAS  Google Scholar 

  8. Kahveci, B., Menteşe, E., Akkaya, E., Yilmaz, F., Doǧan, I.S., and Özel, A., Arch. Pharm. (Weinheim, Ger.), 2014, vol. 347, p. 449. https://doi.org/10.1002/ardp.201300427

    Article  CAS  Google Scholar 

  9. Ding, Z., Zhou, M., and Zeng, C., Arch. Pharm. (Weinheim, Ger.), 2020, vol. 353, article ID 1900367. https://doi.org/10.1002/ardp.201900367

  10. Dar, O.A., Lone, S.A., Malik, M.A., Aqlan, F.M., Wani, M.Y., Hashmi, A.A., and Ahmad, A., Heliyon, 2019, vol. 5, article ID e02055. https://doi.org/10.1016/j.heliyon.2019.e02055

  11. Brandão, P., Marques, C., Burke, A.J., and Pineiro, M., Eur. J. Med. Chem., 2021, vol. 211, article ID 113102. https://doi.org/10.1016/j.ejmech.2020.113102

  12. Raju, R., Chidambaram, K., Chandrasekaran, B., Bayan, M.F., Kumar Maity, T., Alkahtani, A.M., and Chandramoorthy, H.C., J. Saudi Chem. Soc., 2023, vol. 27, article ID 101598. https://doi.org/10.1016/j.jscs.2023.101598

  13. Andreani, A., Burnelli, S., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Varoli, L., Cremonini, M.A., Placucci, G., Cervellati, R., and Greco, E., Eur. J. Med. Chem., 2010, vol. 45, p. 1374. https://doi.org/10.1016/j.ejmech.2009.12.035

    Article  CAS  PubMed  Google Scholar 

  14. Elsaman, T., Mohamed, M.S., Eltayib, E.M., Abdelaziz, H.A., Abdalla, A.E., Munir, M.U., and Moha­med, M.A., Med. Chem. Res., 2022, vol. 31, p. 244. https://doi.org/10.1007/s00044-021-02832-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. De Moraes Gomes, P.A.T., Pena, J.L., and Leite, C.L.A., Mini-Rev. Med. Chem., 2019, vol. 19, p. 56. https://doi.org/10.2174/1389557518666180424093305

    Article  CAS  PubMed  Google Scholar 

  16. Xie, C., Tang, L.-M., Li, F.-N., Guan, L.-P., Pan, C.-Y., and Wang, S.-H., Med. Chem. Res., 2014, vol. 23, p. 2161. https://doi.org/10.1007/s00044-013-0811-1

    Article  CAS  Google Scholar 

  17. Ceramella, J., Iacopetta, D., Catalano, A., Cirillo, F., Lappano, R., and Sinicropi, M.S., Antibiotics, 2022, vol. 11, p. 191. https://doi.org/10.3390/antibiotics11020191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pandeya, S.N., Sriram, D., Nath, G., and DeClercq, E., Eur. J. Pharm. Sci., 1999, vol. 9, p. 25. https://doi.org/10.1016/S0928-0987(99)00038-X

    Article  CAS  PubMed  Google Scholar 

  19. Smolyaninov, I.V., Burmistrova, D.A., Arsenyev, M.V., Almyasheva, N.R., Ivanova, E.S., Smolyaninova, S.A., Pashchenko, K.P., Poddel’sky, A.I., and Berberova, N.T., ChemistrySelect, 2021, vol. 6, p. 10609. https://doi.org/10.1002/slct.202102246

    Article  CAS  Google Scholar 

  20. Ohshima, A., Momotake, A., and Arai, T., J. Photochem. Photobiol., A, 2004, vol. 162, p. 473. https://doi.org/10.1016/S1010-6030(03)00388-5

    Article  CAS  Google Scholar 

  21. Kahveci, B., Molecules, 2005, vol. 10, p. 376. https://doi.org/10.3390/10020376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kahveci, B., Yılmaz, F., Menteşe, E., and Ülker, S., Arch. Pharm. (Weinheim, Ger.), 2017, vol. 350, article ID 1600379. https://doi.org/10.1002/ardp.201600369

  23. Milcent, R. and Redeuilh, C., J. Heterocycl. Chem., 1979, vol. 16, p. 403. https://doi.org/10.1002/jhet.5570160245

    Article  CAS  Google Scholar 

  24. İkizler, A.A., İkizler, A., and Yıldırım, N., Monatsh. Chem., 1991, vol. 122, p. 557. https://doi.org/10.1007/BF00809810

    Article  Google Scholar 

  25. Apak, R., Güçlü, K., Özyürek, M., and Karademir, S.E., J. Agric. Food Chem., 2004, vol. 52, p. 7970. https://doi.org/10.1021/jf048741x

    Article  CAS  PubMed  Google Scholar 

  26. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., and Rice-Evans, C., Free Radicals Biol. Med., 1999, vol. 26, p. 1231. https://doi.org/10.1016/S0891-5849(98)00315-3

    Article  CAS  Google Scholar 

  27. Menteşe, E., Emirik, M., and Sökmen, B.B., Bioorg. Chem., 2019, vol. 86, p. 151. https://doi.org/10.1016/j.bioorg.2019.01.061

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The author thanks the Department of Scientific Research Project of Recep Tayyip Erdogan University for financial assistance (project no. FBA-2021-1276).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Yilmaz.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yilmaz, F. Green Synthesis and Biological Evaluation of Some 1,2,4-Triazol-3-ones. Russ J Org Chem 60, 513–521 (2024). https://doi.org/10.1134/S1070428024030205

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428024030205

Keywords:

Navigation