Skip to main content
Log in

Recent Catalytic Routes to 3-Azabicyclo[3.1.0]hexane Derivatives

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

The review summarizes recent advances in the synthesis of 3-azabicyclo[3.1.0]hexane (3-ABH) derivatives that are heterocyclic systems often present in molecules capable of acting on various biological targets and actively used in drug design. Modern synthetic approaches to 3-ABH derivatives based on transition metal catalysis have been classified and analyzed, and mechanisms of the key processes have been considered. The examined approaches include the synthesis of 3-ABH by three- and five-membered ring fusion, as well as numerous one-pot syntheses from acyclic precursors via tandem cyclizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme

REFERENCES

  1. Stauffacher, D., Niklaus, P., Tscherter, H., Weber, H.P., and Hofmann, A., Tetrahedron, 1969, vol. 25, p. 5879. https://doi.org/10.1016/S0040-4020(01)83095-7

    Article  CAS  PubMed  Google Scholar 

  2. Gomi, S., Ikeda, D., Nakamura, H., Naganawa, H., Yamashita, F., Hotta, K., Kondo, S., Okami, Y., Umezawa, H., and Iitaka, Y., J. Antibiot., 1984, vol. 37, p. 1491. https://doi.org/10.7164/antibiotics.37.1491

    Article  CAS  Google Scholar 

  3. Takahashi, I., Takahashi, K.-I., Ichimura, M., Mori­moto, M., Asano, K., Kawamoto, I., Tomita, F., and Nakano, H., J. Antibiot., 1988, vol. 41, p. 1915. https://doi.org/10.7164/antibiotics.41.1915

    Article  CAS  Google Scholar 

  4. Li, L.H., Kelly, R.C., Warpehoski, M.A., Mc­Govren, J.P., Gebhard, I., and DeKoning, T.F., Invest. New Drugs, 1991, vol. 9, p. 137. https://doi.org/10.1007/BF00175081

    Article  CAS  PubMed  Google Scholar 

  5. Gootz, T.D., Zaniewski, R., Haskell, S., Schmieder, B., Tankovic, J., Girard, D., Courvalin, P., and Polzer, R.J., Antimicrob. Agents Chemother., 1996, vol. 40, p. 2691. https://doi.org/10.1128/AAC.40.12.2691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Epstein, J.W., Brabander, H.J., Fanshawe, W.J., Hofmann, C.M., McKenzie, T.C., Safir, S.R., Oster­berg, A.C., Cosulich, D.B., and Lovell, F.M., J. Med. Chem., 1981, vol. 24, p. 481. https://doi.org/10.1021/jm00137a002

    Article  CAS  PubMed  Google Scholar 

  7. Bymaster, F.P., Golembiowska, K., Kowalska, M., Choi, Y.K., and Tarazi, F.I., Synapse, 2012, vol. 66, p. 522. https://doi.org/10.1002/syn.21538

    Article  CAS  PubMed  Google Scholar 

  8. Skolnick, P., Popik, P., Janowsky, A., Beer, B., and Lippa, A.S., Eur. J. Pharmacol., 2003, vol. 461, p. 99. https://doi.org/10.1016/S0014-2999(03)01310-4

    Article  CAS  PubMed  Google Scholar 

  9. Venkatraman, S., Bogen, S.L., Arasappan, A., Bennett, F., Chen, K., Jao, E., Liu, Y.-T., Lovey, R., Hendrata, S., Huang, Y., Pan, W., Parekh, T., Pinto, P., Popov, V., Pike, R., Ruan, S., Santhanam, B., Vibul­bhan, B., Wu, W., Yang, W., Kong, J., Liang, X., Wong, J., Liu, R., Butkiewicz, N., Chase, R., Hart, A., Agrawal, S., Ingravallo, P., Pichardo, J., Kong, R., Baroudy, B., Malcolm, B., Guo, Z., Prongay, A., Madison, V., Broske, L., Cui, X., Cheng, K.-C., Hsieh, Y., Brisson, J.-M., Prelusky, D., Korfmacher, W., White, R., Bogdanowich-Knipp, S., Pavlovsky, A., Bradley, P., Saksena, A.K., Ganguly, A., Piwinski, J., Girijavallabhan, V., and Njoroge, F.G., J. Med. Chem., 2006, vol. 49, p. 6074. https://doi.org/10.1021/jm060325b

    Article  CAS  PubMed  Google Scholar 

  10. Reesink, H., Bergmann, J., De Bruijne, J., Weegink, C., Van Lier, J., Van Vliet, A., Keung, A., Li, J., O’Mara, E., Treitel, M., Hughes, E., Janssen, H., and De Knegt, R., J. Hepatol., 2009, vol. 50, p. S35. https://doi.org/10.1016/S0168-8278(09)60088-X

  11. Hashemian, S.M.R., Sheida, A., Taghizadieh, M., Memar, M.Y., Hamblin, M.R., Bannazadeh Baghi, H., Sadri Nahand, J., Asemi, Z., and Mirzaei, H., Biomed. Pharmacother., 2023, vol. 162, article ID 114367. https://doi.org/10.1016/j.biopha.2023.114367

  12. Fensome, A., Ambler, C.M., Arnold, E., Banker, M.E., Clark, J.D., Dowty, M.E., Efremov, I.V., Flick, A., Ger­stenberger, B.S., Gifford, R.S., Gopalsamy, A., He­gen, M., Jussif, J., Limburg, D.C., Lin, T.H., Pierce, B.S., Sharma, R., Trujillo, J.I., Vajdos, F.F., Vincent, F., Wan, Z.-K., Xing, L., Yang, X., and Yang, X., Bioorg. Med. Chem., 2020, vol. 28, article ID 115481. https://doi.org/10.1016/j.bmc.2020.115481

  13. Zhang, L., Butler, C.R., Maresca, K.P., Takano, A., Nag, S., Jia, Z., Arakawa, R., Piro, J.R., Samad, T., Smith, D.L., Nason, D.M., O’Neil, S., McAllister, L., Schildknegt, K., Trapa, P., McCarthy, T.J., Villalo­bos, A., and Halldin, C., J. Med. Chem., 2019, vol. 62, p. 8532. https://doi.org/10.1021/acs.jmedchem.9b00847

    Article  CAS  PubMed  Google Scholar 

  14. Patel, S., Meilandt, W.J., Erickson, R.I., Chen, J., Deshmukh, G., Estrada, A.A., Fuji, R.N., Gibbons, P., Gustafson, A., Harris, S.F., Imperio, J., Liu, W., Liu, X., Liu, Y., Lyssikatos, J.P., Ma, C., Yin, J., Lewcock, J.W., and Siu, M., J. Med. Chem., 2017, vol. 60, p. 8083. https://doi.org/10.1021/acs.jmedchem.7b00843

    Article  CAS  PubMed  Google Scholar 

  15. Micheli, F., Arista, L., Bonanomi, G., Blaney, F.E., Braggio, S., Capelli, A.M., Checchia, A., Damiani, F., Di-Fabio, R., Fontana, S., Gentile, G., Griffante, C., Hamprecht, D., Marchioro, C., Mugnaini, M., Piner, J., Ratti, E., Tedesco, G., Tarsi, L., Terreni, S., Worby, A., Ashby, C.R., and Heidbreder, C., J. Med. Chem., 2010, vol. 53, p. 374. https://doi.org/10.1021/jm901319p

    Article  CAS  PubMed  Google Scholar 

  16. Kuttruff, C.A., Ferrara, M., Bretschneider, T., Hoerer, S., Handschuh, S., Nosse, B., Romig, H., Nicklin, P., and Roth, G.J., ACS Med. Chem. Lett., 2017, vol. 8, p. 1252. https://doi.org/10.1021/acsmedchemlett.7b00312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, S., Li, L., Meng, G., Zhang, X., Hou, L., Hua, X., and Wang, M., Sustainability, 2021, vol. 13, p. 6712. https://doi.org/10.3390/su13126712

    Article  CAS  Google Scholar 

  18. Krow, G.R. and Cannon, K.C., Org. Prep. Proced. Int., 2000, vol. 32, p. 103. https://doi.org/10.1080/00304940009356278

    Article  CAS  Google Scholar 

  19. Ershov, O.V. and Bardasov, I.N., Chem. Heterocycl. Compd., 2016, vol. 52, p. 447. https://doi.org/10.1007/s10593-016-1910-y

    Article  CAS  Google Scholar 

  20. Allouche, E.M.D. and Charette, A.B., Synthesis, 2019, vol. 51, p. 3947. https://doi.org/10.1055/s-0037-1611915

    Article  CAS  Google Scholar 

  21. Dorel, R. and Echavarren, A.M., J. Org. Chem., 2015, vol. 80, p. 7321. https://doi.org/10.1021/acs.joc.5b01106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Giovanardi, G., Balestri, D., Secchi, A., and Cera, G., Org. Biomol. Chem., 2022, vol. 20, p. 6464. https://doi.org/10.1039/D2OB01074G

    Article  CAS  PubMed  Google Scholar 

  23. Kale, B.S., Lee, H., and Liu, R., Adv. Synth. Catal., 2017, vol. 359, p. 402. https://doi.org/10.1002/adsc.201600980

    Article  CAS  Google Scholar 

  24. Wang, Y.-J., Li, X.-X., and Chen, Z., J. Org. Chem., 2020, vol. 85, p. 7694. https://doi.org/10.1021/acs.joc.0c00146

    Article  CAS  PubMed  Google Scholar 

  25. Yang, J.-M., Zhao, Y.-T., Li, Z.-Q., Gu, X.-S., Zhu, S.-F., and Zhou, Q.-L., ACS Catal., 2018, vol. 8, p. 7351. https://doi.org/10.1021/acscatal.8b02052

    Article  CAS  Google Scholar 

  26. Yang, J.-M., Li, Z.-Q., Li, M.-L., He, Q., Zhu, S.-F., and Zhou, Q.-L., J. Am. Chem. Soc., 2017, vol. 139, p. 3784. https://doi.org/10.1021/jacs.6b13168

    Article  CAS  PubMed  Google Scholar 

  27. Zeineddine, A., Rekhroukh, F., Sosa Carrizo, E.D., Mallet-Ladeira, S., Miqueu, K., Amgoune, A., and Bourissou, D., Angew. Chem., Int. Ed., 2018, vol. 57, p. 1306. https://doi.org/10.1002/anie.201711647

    Article  CAS  Google Scholar 

  28. Wang, G., Wang, Y., Li, Z., Li, H., Yu, M., Pang, M., and Zhao, X., Org. Lett., 2022, vol. 24, p. 9425. https://doi.org/10.1021/acs.orglett.2c03812

    Article  CAS  PubMed  Google Scholar 

  29. Sánchez-Cantalejo, F., Priest, J.D., and Davies, P.W., Chem. Eur. J., 2018, vol. 24, p. 17215. https://doi.org/10.1002/chem.201804378

    Article  CAS  PubMed  Google Scholar 

  30. Liu, J., Zhu, L., Wan, W., and Huang, X., Org. Lett., 2020, vol. 22, p. 3279. https://doi.org/10.1021/acs.orglett.0c01086

    Article  CAS  PubMed  Google Scholar 

  31. Xia, J., Liu, J., Yu, Y., Zhang, J., and Huang, X., Org. Lett., 2022, vol. 24, p. 4298. https://doi.org/10.1021/acs.orglett.2c01807

    Article  CAS  PubMed  Google Scholar 

  32. Song, L., Tian, X., Rudolph, M., Rominger, F., and Hashmi, A.S.K., Chem. Commun., 2019, vol. 55, p. 9007. https://doi.org/10.1039/C9CC04027G

    Article  CAS  Google Scholar 

  33. Shcherbakov, N.V., Dar’in, D.V., Kukushkin, V.Yu., and Dubovtsev, A.Yu., J. Org. Chem., 2021, vol. 86, p. 12964. https://doi.org/10.1021/acs.joc.1c01654

    Article  CAS  PubMed  Google Scholar 

  34. Tian, X., Song, L., Rudolph, M., Rominger, F., Oeser, T., and Hashmi, A.S.K., Angew. Chem., Int. Ed., 2019, vol. 58, p. 3589. https://doi.org/10.1002/anie.201812002

    Article  CAS  Google Scholar 

  35. Munakala, A., Gollapelli, K.K., Nanubolu, J.B., and Chegondi, R., Org. Lett., 2020, vol. 22, p. 7019. https://doi.org/10.1021/acs.orglett.0c02555

    Article  CAS  PubMed  Google Scholar 

  36. Chen, X., Luo, Z., Chen, Y., and Zhang, Y., Org. Lett., 2022, vol. 24, p. 9200 https://doi.org/10.1021/acs.orglett.2c03619

    Article  CAS  PubMed  Google Scholar 

  37. Shen, W.-B., Tang, X.-T., Zhang, T.-T., Lv, D.-C., Zhao, D., Su, T.-F., and Meng, L., Org. Lett., 2021, vol. 23, p. 1285. https://doi.org/10.1021/acs.orglett.0c04268

    Article  CAS  PubMed  Google Scholar 

  38. Monnier, F., Castillo, D., Dérien, S., Toupet, L., and Dixneuf, P.H., Angew. Chem., Int. Ed., 2003, vol. 42, p. 5474. https://doi.org/10.1002/anie.200352477

    Article  CAS  Google Scholar 

  39. Monnier, F., Vovard-Le Bray, C., Castillo, D., Aubert, V., Dérien, S., Dixneuf, P.H., Toupet, L., Ienco, A., and Mealli, C., J. Am. Chem. Soc., 2007, vol. 129, p. 6037. https://doi.org/10.1021/ja0700146

    Article  CAS  PubMed  Google Scholar 

  40. Gao, M., Gao, Q., Hao, X., Wu, Y., Zhang, Q., Liu, G., and Liu, R., Org. Lett., 2020, vol. 22, p. 1139. https://doi.org/10.1021/acs.orglett.9b04662

    Article  CAS  PubMed  Google Scholar 

  41. Guthertz, A., Leutzsch, M., Wolf, L.M., Gupta, P., Rummelt, S.M., Goddard, R., Farès, C., Thiel, W., and Fürstner, A., J. Am. Chem. Soc., 2018, vol. 140, p. 3156. https://doi.org/10.1021/jacs.8b00665

    Article  CAS  PubMed  Google Scholar 

  42. Peil, S., Bistoni, G., Goddard, R., and Fürstner, A., J. Am. Chem. Soc., 2020, vol. 142, p. 18541. https://doi.org/10.1021/jacs.0c07808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Peil, S., Guthertz, A., Biberger, T., and Fürstner, A., Angew. Chem., Int. Ed., 2019, vol. 58, p. 8851. https://doi.org/10.1002/anie.201904256

    Article  CAS  Google Scholar 

  44. Tan, Y., Li, S., Song, L., Zhang, X., Wu, Y., and Sun, J., Angew. Chem., Int. Ed., 2022, vol. 61, article ID e202204319. https://doi.org/10.1002/anie.202204319

  45. Feng, J.-J. and Zhang, J., ACS Catal., 2017, vol. 7, p. 1533. https://doi.org/10.1021/acscatal.6b03399

    Article  CAS  Google Scholar 

  46. Huang, J., Hu, X., Chen, F., Gui, J., and Zeng, W., Org. Biomol. Chem., 2019, vol. 17, p. 7042. https://doi.org/10.1039/C9OB01028A

    Article  CAS  PubMed  Google Scholar 

  47. Hou, S.-H., Yu, X., Zhang, R., Wagner, C., and Dong, G., J. Am. Chem. Soc., 2022, vol. 144, p. 22159. https://doi.org/10.1021/jacs.2c09814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Suleymanov, A.A., Vasilyev, D.V., Novikov, V.V., Nelyubina, Y.V., and Perekalin, D.S., Beilstein J. Org. Chem., 2017, vol. 13, p. 639. https://doi.org/10.3762/bjoc.13.62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Herbort, J.H., Lalisse, R.F., Hadad, C.M., and RajanBabu, T.V., ACS Catal., 2021, vol. 11, p. 9605. https://doi.org/10.1021/acscatal.1c02530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu, W. and Tong, X., Org. Lett., 2019, vol. 21, p. 9396. https://doi.org/10.1021/acs.orglett.9b03621

    Article  CAS  PubMed  Google Scholar 

  51. Ghosh, N., Maiereanu, C., Suffert, J., and Blond, G., Synlett, 2017, vol. 28, p. 451. https://doi.org/10.1055/s-0036-1588658

    Article  CAS  Google Scholar 

  52. Sun, D., Zhou, B., Liu, L., Chen, X., Hou, H., Han, Y., Yan, C., Shi, Y., and Zhu, S., Org. Lett., 2023, vol. 25, p. 4677. https://doi.org/10.1021/acs.orglett.3c01551

    Article  CAS  PubMed  Google Scholar 

  53. Marco-Martínez, J., López-Carrillo, V., Buñuel, E., Simancas, R., and Cárdenas, D.J., J. Am. Chem. Soc., 2007, vol. 129, p. 1874. https://doi.org/10.1021/ja0685598

    Article  CAS  PubMed  Google Scholar 

  54. Mekareeya, A., Walker, P.R., Couce-Rios, A., Camp­bell, C.D., Steven, A., Paton, R.S., and Anderson, E.A., J. Am. Chem. Soc., 2017, vol. 139, p. 10104. https://doi.org/10.1021/jacs.7b05436

    Article  CAS  PubMed  Google Scholar 

  55. Gao, N., Banwell, M.G., and Willis, A.C., Org. Lett., 2017, vol. 19, p. 162. https://doi.org/10.1021/acs.orglett.6b03465

    Article  CAS  PubMed  Google Scholar 

  56. Trost, B.M., Lautens, M., Chan, C., Jebaratnam, D.J., and Mueller, T., J. Am. Chem. Soc., 1991, vol. 113, p. 636. https://doi.org/10.1021/ja00002a036

    Article  CAS  Google Scholar 

  57. Chaki, B.M., Takenaka, K., Zhu, L., Tsujihara, T., Takizawa, S., and Sasai, H., Adv. Synth. Catal., 2020, vol. 362, p. 1537. https://doi.org/10.1002/adsc.202000044

    Article  CAS  Google Scholar 

  58. Grigg, R., Rasul, R., Redpath, J., and Wilson, D., Tetrahedron Lett., 1996, vol. 37, p. 4609. https://doi.org/10.1016/0040-4039(96)00889-1

    Article  CAS  Google Scholar 

  59. Oppolzer, W., Pimm, A., Stammen, B., and Hume, W.E., Helv. Chim. Acta, 1997, vol. 80, p. 623. https://doi.org/10.1002/hlca.19970800302

    Article  CAS  Google Scholar 

  60. Böhmer, J., Grigg, R., and Marchbank, J.D., Chem. Commun., 2002, p. 768. https://doi.org/10.1039/b110890e

  61. Huang, X., Nguyen, M.H., Pu, M., Zhang, L., Chi, Y.R., Wu, Y.-D., and Zhou, J.S., Angew. Chem., Int. Ed., 2020, vol. 59, p. 10814. https://doi.org/10.1002/anie.202000859

    Article  CAS  Google Scholar 

  62. Kleban, I., Krokhmaliuk, Y., Reut, S., Shuvakin, S., Pendyukh, V.V., Khyzhan, O.I., Yarmoliuk, D.S., Tym­tsu­nik, A.V., Rassukana, Y.V., and Grygorenko, O.O., Eur. J. Org. Chem., 2021, vol. 2021, p. 6551. https://doi.org/10.1002/ejoc.202000977

    Article  CAS  Google Scholar 

  63. Harris, M.R., Li, Q., Lian, Y., Xiao, J., and Lond­regan, A.T., Org. Lett., 2017, vol. 19, p. 2450. https://doi.org/10.1021/acs.orglett.7b01097

    Article  CAS  PubMed  Google Scholar 

  64. Chen, P., Zhu, C., Zhu, R., Lin, Z., Wu, W., and Jiang, H., Org. Biomol. Chem., 2017, vol. 15, p. 1228. https://doi.org/10.1039/C6OB02137A

    Article  CAS  PubMed  Google Scholar 

  65. Doyle, M.P., Loh, K.-L., DeVries, K.M., and Chinn, M.S., Tetrahedron Lett., 1987, vol. 28, p. 833. https://doi.org/10.1016/S0040-4039(01)81001-7

    Article  CAS  Google Scholar 

  66. Haddad, N. and Galili, N., Tetrahedron: Asymmetry, 1997, vol. 8, p. 3367. https://doi.org/10.1016/S0957-4166(97)00463-1

    Article  CAS  Google Scholar 

  67. Gross, Z., Galili, N., and Simkhovich, L., Tetrahedron Lett., 1999, vol. 40, p. 1571. https://doi.org/10.1016/S0040-4039(98)02647-1

    Article  CAS  Google Scholar 

  68. Muthusamy, S. and Gunanathan, C., Synlett, 2003, vol. 2003, p. 1599. https://doi.org/10.1055/s-2003-40996

    Article  CAS  Google Scholar 

  69. Ueda, J., Harada, S., Kanda, A., Nakayama, H., and Nemoto, T., J. Org. Chem., 2020, vol. 85, p. 10934. https://doi.org/10.1021/acs.joc.0c01580

    Article  CAS  PubMed  Google Scholar 

  70. Mandour, H.S.A., Chanthamath, S., Shibatomi, K., and Iwasa, S., Adv. Synth. Catal., 2017, vol. 359, p. 1742. https://doi.org/10.1002/adsc.201601345

    Article  CAS  Google Scholar 

  71. Chanthamath, S., Mandour, H.S.A., Tong, T.M.T., Shibatomi, K., and Iwasa, S., Chem. Commun., 2016, vol. 52, p. 7814. https://doi.org/10.1039/C6CC02498J

    Article  CAS  Google Scholar 

  72. Mandour, H.S.A., Nakagawa, Y., Tone, M., Inoue, H., Otog, N., Fujisawa, I., Chanthamath, S., and Iwasa, S., Beilstein J. Org. Chem., 2019, vol. 15, p. 357. https://doi.org/10.3762/bjoc.15.31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Matsuo, T., Miyake, T., and Hirota, S., Tetrahedron Lett., 2019, vol. 60, article ID 151226. https://doi.org/10.1016/j.tetlet.2019.151226

  74. Zetzsche, L.E. and Narayan, A.R.H., Nat. Rev. Chem., 2020, vol. 4, p. 334. https://doi.org/10.1038/s41570-020-0191-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Van Stappen, C., Deng, Y., Liu, Y., Heidari, H., Wang, J.-X., Zhou, Y., Ledray, A.P., and Lu, Y., Chem. Rev., 2022, vol. 122, p. 11974. https://doi.org/10.1021/acs.chemrev.2c00106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chandgude, A.L., Ren, X., and Fasan, R., J. Am. Chem. Soc., 2019, vol. 141, p. 9145. https://doi.org/10.1021/jacs.9b02700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ren, X., Chandgude, A.L., and Fasan, R., ACS Catal., 2020, vol. 10, p. 2308. https://doi.org/10.1021/acscatal.9b05383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Darses, B., Maldivi, P., Philouze, C., Dauban, P., and Poisson, J.-F., Org. Lett., 2021, vol. 23, p. 300. https://doi.org/10.1021/acs.orglett.0c03774

    Article  CAS  PubMed  Google Scholar 

  79. Homma, H., Harada, S., Ito, T., Kanda, A., and Nemoto, T., Org. Lett., 2020, vol. 22, p. 8132. https://doi.org/10.1021/acs.orglett.0c03110

    Article  CAS  PubMed  Google Scholar 

  80. Sontakke, G.S., Pal, K., and Volla, C.M.R., J. Org. Chem., 2019, vol. 84, p. 12198. https://doi.org/10.1021/acs.joc.9b01924

    Article  CAS  PubMed  Google Scholar 

  81. Zhu, C.-Z., Wie, Y., and Shi, M., Org. Chem. Front., 2019, vol. 6, p. 2884. https://doi.org/10.1039/C9QO00714H

    Article  CAS  Google Scholar 

  82. Stahl, K., Hertzsch, W., and Musso, H., Liebigs Ann. Chem., 1985, vol. 1985, p. 1474. https://doi.org/10.1002/jlac.198519850718

    Article  Google Scholar 

  83. Charette, A.B. and Wilb, N., Synlett, 2002, vol. 2002, p. 176. https://doi.org/10.1055/s-2002-19345

    Article  Google Scholar 

  84. Werth, J. and Uyeda, C., Angew. Chem., Int. Ed., 2018, vol. 57, p. 13902. https://doi.org/10.1002/anie.201807542

    Article  CAS  Google Scholar 

  85. Huo, H. and Gong, Y., Org. Biomol. Chem., 2022, vol. 20, p. 3847. https://doi.org/10.1039/D1OB02450G

    Article  CAS  PubMed  Google Scholar 

  86. Molchanov, A.P., Efremova, M.M., and Kuzne­tsov, M.A., Russ. Chem. Bull., 2022, vol. 71, p. 620. https://doi.org/10.1007/s11172-022-3460-z

    Article  CAS  Google Scholar 

  87. Filatov, A.S., Knyazev, N.A., Molchanov, A.P., Panikorovsky, T.L., Kostikov, R.R., Larina, A.G., Boitsov, V.M., and Stepakov, A.V., J. Org. Chem., 2017, vol. 82, p. 959. https://doi.org/10.1021/acs.joc.6b02505

    Article  CAS  PubMed  Google Scholar 

  88. Filatov, A.S., Wang, S., Khoroshilova, O.V., Lozov­skiy, S.V., Larina, A.G., Boitsov, V.M., and Stepa­kov, A.V., J. Org. Chem., 2019, vol. 84, p. 7017. https://doi.org/10.1021/acs.joc.9b00753

    Article  CAS  PubMed  Google Scholar 

  89. Shmakov, S.V., Latypova, D.K., Shmakova, T.V., Rubinshtein, A.A., Chukin, M.V., Zhuravskii, S.G., Knyazev, N.A., Stepakov, A.V., Galagudza, M.M., and Boitsov, V.M., Int. J. Mol. Sci., 2022, vol. 23, article no. 10759. https://doi.org/10.3390/ijms231810759

  90. Deng, H., Yang, W.-L., Tian, F., Tang, W., and Deng, W.-P., Org. Lett., 2018, vol. 20, p. 4121. https://doi.org/10.1021/acs.orglett.8b01686

    Article  CAS  PubMed  Google Scholar 

  91. Yuan, Y., Zheng, Z.-J., Ye, F., Ma, J.-H., Xu, Z., Bai, X.-F., Li, L., and Xu, L.-W., Org. Chem. Front., 2018, vol. 5, p. 2759. https://doi.org/10.1039/C8QO00761F

    Article  CAS  Google Scholar 

  92. López-Rodríguez, A., Domínguez, G., and Pérez-Castells, J., J. Org. Chem., 2019, vol. 84, p. 924. https://doi.org/10.1021/acs.joc.8b02849

    Article  CAS  PubMed  Google Scholar 

  93. Rogge, T., Kaplaneris, N., Chatani, N., Kim, J., Chang, S., Punji, B., Schafer, L.L., Musaev, D.G., Wencel-Delord, J., Roberts, C.A., Sarpong, R., Wilson, Z.E., Brimble, M.A., Johansson, M.J., and Ackermann, L., Nat. Rev. Methods Primers, 2021, vol. 1, article no. 43. https://doi.org/10.1038/s43586-021-00041-2

  94. He, J., Wasa, M., Chan, K.S.L., Shao, Q., and Yu, J.-Q., Chem. Rev., 2017, vol. 117, p. 8754. https://doi.org/10.1021/acs.chemrev.6b00622

    Article  CAS  PubMed  Google Scholar 

  95. Gandeepan, P., Müller, T., Zell, D., Cera, G., Warratz, S., and Ackermann, L., Chem. Rev., 2019, vol. 119, p. 2192. https://doi.org/10.1021/acs.chemrev.8b00507

    Article  CAS  PubMed  Google Scholar 

  96. Nakanishi, M., Katayev, D., Besnard, C., and Kündig, E.P., Angew. Chem., Int. Ed., 2011, vol. 50, p. 7438. https://doi.org/10.1002/anie.201102639

    Article  CAS  Google Scholar 

  97. Saget, T. and Cramer, N., Angew. Chem., Int. Ed., 2012, vol. 51, p. 12842. https://doi.org/10.1002/anie.201207959

    Article  CAS  Google Scholar 

  98. Pedroni, J. and Cramer, N., Angew. Chem., Int. Ed., 2015, vol. 54, p. 11826. https://doi.org/10.1002/anie.201505916

    Article  CAS  Google Scholar 

  99. Dailler, D., Rocaboy, R., and Baudoin, O., Angew. Chem., Int. Ed., 2017, vol. 56, p. 7218. https://doi.org/10.1002/anie.201703109

    Article  CAS  Google Scholar 

  100. Pedroni, J. and Cramer, N., J. Am. Chem. Soc., 2017, vol. 139, p. 12398. https://doi.org/10.1021/jacs.7b07024

    Article  CAS  PubMed  Google Scholar 

  101. Jerhaoui, S., Djukic, J.-P., Wencel-Delord, J., and Colobert, F., ACS Catal., 2019, vol. 9, p. 2532. https://doi.org/10.1021/acscatal.8b04946

    Article  CAS  Google Scholar 

  102. He, C. and Gaunt, M.J., Chem. Sci., 2017, vol. 8, p. 3586. https://doi.org/10.1039/C7SC00468K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhuang, Z. and Yu, J.-Q., J. Am. Chem. Soc., 2020, vol. 142, p. 12015. https://doi.org/10.1021/jacs.0c04801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Barsu, N., Bolli, S.K., and Sundararaju, B., Chem. Sci., 2017, vol. 8, p. 2431. https://doi.org/10.1039/C6SC05026C

    Article  CAS  PubMed  Google Scholar 

  105. Williamson, P., Galván, A., and Gaunt, M.J., Chem. Sci., 2017, vol. 8, p. 2588. https://doi.org/10.1039/C6SC05581H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Barsu, N., Kalsi, D., and Sundararaju, B., Catal. Sci. Technol., 2018, vol. 8, p. 5963. https://doi.org/10.1039/C8CY02060D

    Article  CAS  Google Scholar 

  107. Ma, S. and Gu, Z., Angew. Chem., Int. Ed., 2005, vol. 44, p. 7512. https://doi.org/10.1002/anie.200501298

    Article  CAS  Google Scholar 

  108. Clemenceau, A., Thesmar, P., Gicquel, M., Le Flohic, A., and Baudoin, O., J. Am. Chem. Soc., 2020, vol. 142, p. 15355. https://doi.org/10.1021/jacs.0c05887

    Article  CAS  PubMed  Google Scholar 

  109. Veeranna, K.D., Das, K.K., and Baskaran, S., Angew. Chem., Int. Ed., 2017, vol. 56, p. 16197. https://doi.org/10.1002/anie.201708138

    Article  CAS  Google Scholar 

  110. Xu, H., Han, T., Luo, X., and Deng, W.-P., Chin. J. Chem., 2021, vol. 39, p. 666. https://doi.org/10.1002/cjoc.202000405

    Article  CAS  Google Scholar 

  111. Veeranna, K.D., Das, K.K., and Baskaran, S., Org. Biomol. Chem., 2021, vol. 19, p. 4054. https://doi.org/10.1039/D1OB00416F

    Article  Google Scholar 

  112. Veeranna, K.D., Das, K.K., and Baskaran, S., Chem. Commun., 2019, vol. 55, p. 7647. https://doi.org/10.1039/C9CC03647D

    Article  CAS  Google Scholar 

  113. Huang, F., Wu, P., and Yu, Z., J. Org. Chem., 2020, vol. 85, p. 4373. https://doi.org/10.1021/acs.joc.0c00093

    Article  CAS  PubMed  Google Scholar 

  114. Toh, K.K., Biswas, A., Wang, Y.-F., Tan, Y.Y., and Chiba, S., J. Am. Chem. Soc., 2014, vol. 136, p. 6011. https://doi.org/10.1021/ja500382c

    Article  CAS  PubMed  Google Scholar 

  115. Wang, Y., Shen, S., He, C., Zhou, Y., Zhang, K., Rao, B., Han, T., Su, Y., Duan, X.-H., and Liu, L., Chem. Sci., 2023, vol. 14, p. 6663. https://doi.org/10.1039/D3SC01752D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Twilton, J., Le, C., Zhang, P., Shaw, M.H., Evans, R.W., and MacMillan, D.W.C., Nat. Rev. Chem., 2017, vol. 1, article no. 0052. https://doi.org/10.1038/s41570-017-0052

  117. Chan, A.Y., Perry, I.B., Bissonnette, N.B., Buksh, B.F., Edwards, G.A., Frye, L.I., Garry, O.L., Lavagni­no, M.N., Li, B.X., Liang, Y., Mao, E., Millet, A., Oakley, J.V., Reed, N.L., Sakai, H.A., Seath, C.P., and MacMillan, D.W.C., Chem. Rev., 2022, vol. 122, p. 1485. https://doi.org/10.1021/acs.chemrev.1c00383

    Article  CAS  PubMed  Google Scholar 

  118. Romero, N.A. and Nicewicz, D.A., Chem. Rev., 2016, vol. 116, p. 10075. https://doi.org/10.1021/acs.chemrev.6b00057

    Article  CAS  PubMed  Google Scholar 

  119. Deng, Y., Zhang, J., Bankhead, B., Markham, J.P., and Zeller, M., Chem. Commun., 2021, vol. 57, p. 5254. https://doi.org/10.1039/D1CC02016A

    Article  CAS  Google Scholar 

  120. Lanzi, M., Santacroce, V., Balestri, D., Marchiò, L., Bigi, F., Maggi, R., Malacria, M., and Maestri, G., Angew. Chem., Int. Ed., 2019, vol. 58, p. 6703. https://doi.org/10.1002/anie.201902837

    Article  CAS  Google Scholar 

  121. Ide, K., Furuta, M., and Tokuyama, H., Org. Biomol. Chem., 2021, vol. 19, p. 9172. https://doi.org/10.1039/D1OB01733K

    Article  CAS  PubMed  Google Scholar 

  122. Lu, Y., Chen, C., Zhu, H., Luo, Z., and Zhang, Y., Green Chem., 2022, vol. 24, p. 8021. https://doi.org/10.1039/D2GC02058K

    Article  CAS  Google Scholar 

  123. Piou, T. and Rovis, T., J. Am. Chem. Soc., 2014, vol. 136, p. 11292. https://doi.org/10.1021/ja506579t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lahtigui, O., Forster, D., Duchemin, C., and Cramer, N., ACS Catal., 2022, vol. 12, p. 6209. https://doi.org/10.1021/acscatal.2c01827

    Article  CAS  Google Scholar 

Download references

Funding

This work was performed under financial support from the Russian Science Foundation (project no. 21-73-00161).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. N. Kotovshchikov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barashkova, X.A., Latyshev, G.V., Kotovshchikov, Y.N. et al. Recent Catalytic Routes to 3-Azabicyclo[3.1.0]hexane Derivatives. Russ J Org Chem 60, 359–386 (2024). https://doi.org/10.1134/S1070428024030011

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428024030011

Keywords:

Navigation