Skip to main content
Log in

Design, Green Synthesis, and Anticancer Activity of Novel Nicotinonitrile Derivatives

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

Novel pyridine derivatives were successfully synthesized by grinding, microwave-assisted, and conventional techniques. Ethyl 6-amino-5-cyano-2-methyl-4-[(1S,2R,3R,4R)-1,2,3,4,5-pentahydroxypentyl]nicotinate (1) was synthesized and used as a versatile reagent for the synthesis of novel compounds such as nicotinic acid, nicotinohydrazide, 3,5-dioxopyrazolidine, 1,2,4-triazole, cyanoacetamide, urea, 2,5-dioxopyrrolidine, 3-dioxoisoindoline, sulfonamide, Schiff base, and formamide derivatives by its reactions with a series of nucleophilic and electrophilic reagents. The results of the synthesis with the use of the grinding, microwave, and conventional techniques were compared. The structures and compositions of the newly synthesized compounds were confirmed by IR and 1H and 13C NMR spectroscopy, mass spectrometry, and elemental analysis. Some of the synthesized compounds were screened in vitro for the activity against two cancer cell lines. Ethyl 5-cyano-2-methyl-4-[(1S,2R,3R,4R)-1,2,3,4,5-pentahydroxypentyl]-6-(3-phenylureido)nicotinate showed a high cytotoxic activity and selectivity against cancer cells (HePG2: IC50 = 34.31 μM; Caco-2: IC50 = 24.79 μM). Imaging cancer cell lines treated by some synthesized compounds was performed by transmission electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Scheme
Fig. 1.

REFERENCES

  1. Solovev, V.O., Soloveva, S.V., and Milevsky, N.A., IOP Conf. Ser.: Mater. Sci. Eng., 2022, vol. 1212, p. 012015. https://doi.org/10.1088/1757-899X/1212/1/012015

    Article  CAS  Google Scholar 

  2. Wen, S.P. and Fielding, L.A., SMOABF, 2022, vol. 18, p. 1385. https://doi.org/10.1039/D1SM01793D

    Article  CAS  Google Scholar 

  3. Liu, C., Shi, L., Zhang, J., and Sun, J., J. Chem. Eng., 2022, vol. 427, p. 131633. https://doi.org/10.1016/j.cej.2021.131633

    Article  CAS  Google Scholar 

  4. Iroha, N.B., Dueke-Eze, C.C., Fasina, T.M., Anadebe, C.V., and Guo, L., JICS., 2022, vol. 19, p. 2331. https://doi.org/10.1007/s13738-021-02450-2

    Article  CAS  Google Scholar 

  5. Rezaeivala, M., Karimi, S., Tuzun, B., and Sayin, K., Thin Solid Films, 2022, vol. 741, p. 139036. https://doi.org/10.1016/j.tsf.2021.139036

    Article  CAS  Google Scholar 

  6. Ansari, K.R., Quraishi, M.A., and Singh, A., Measurement., 2015, vol. 76, p. 136. https://doi.org/10.1016/j.measurement.2015.08.028

    Article  Google Scholar 

  7. Verma, C., Rhee, K.Y., Quraishi, M.A., and Ebenso, E.E., J. Taiwan Inst. Chem. Eng., 2020, vol. 117, p. 265. https://doi.org/10.1016/j.jtice.2020.12.011

    Article  CAS  Google Scholar 

  8. Deng, W., Wu, T., Wu, Y., Zheng, H., Li, G., Yang, M., and Wang, X., J. Mater. Chem., 2022, vol. 10, p. 20993. https://doi.org/10.1039/D2TA06351D

    Article  CAS  Google Scholar 

  9. Torabi, M., Yarie, M., Zolfigol, A.M., Azizian, S., and Gu, Y., RSC Adv., 2022, vol. 12, p. 8804. https://doi.org/10.1039/D2RA00451H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bai, H., Ma, M., Bai, B., Bai, L., Bai, Y., Zuo, J., and Huang, W., Fuel, 2022, vol. 310, p. 122225. https://doi.org/10.1016/j.fuel.2021.122225

    Article  CAS  Google Scholar 

  11. Balamurugan, S., Ganesan, S., Kamaraj, S., Mathew, V., Kim, J., Arumugam, N., and Almansour, I.A., Opt. Mat., 2022, vol. 125, p. 112082. https://doi.org/10.1016/j.optmat.2022.112082

    Article  CAS  Google Scholar 

  12. Wang, Y., Wu, Y., Cong, H., Wang, S., Shen, Y., and Yu, B., J. Polym. Environ., 2022, vol. 30, p. 385. https://doi.org/10.1007/s10924-021-02203-5

    Article  CAS  Google Scholar 

  13. Xing, F., Xi, H., Yu, Y., and Zhou, Y., Sci. Total Environ., 2020, vol. 703, p. 134667. https://doi.org/10.1016/j.scitotenv.2019.134667

    Article  CAS  PubMed  Google Scholar 

  14. Volpi, G. and Rabezzana, R., New J. Chem., 2021, vol. 45, p. 5737. https://doi.org/10.1039/D1NJ00322D

    Article  CAS  Google Scholar 

  15. Tańska, N., Eur. Phys. J. D, 2021, vol. 75, p. 1. https://doi.org/10.1140/epjd/s10053-021-00137-0

    Article  CAS  Google Scholar 

  16. Abdelgawad, M.A., Al-Sanea, M.M., Musa, A., Elmowafy, M., El-Damasy, A.K., Azouz, A.A., and Bakr, R.R., J. Inflamm. Res., 2022, vol. 15, p. 451. https://doi.org/10.1016/j.arabjc.2022.104015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huszár, J., Bozó, É., Beke, G., Szalai, K.K., Kardos, P., Boros, A., and Éles, J., Chem. Med. Chem., 2022, vol. 2022, p. e202100707. https://doi.org/10.1002/cmdc.202100707

  18. Cegłowski, M., Marien, Y.W., Smeets, S., De Smet, L., D’hooge, D.R., Schroeder, G., and Hoogenboom, R., Chem. Mater., 2021, vol. 34, p. 84. https://doi.org/10.1021/acs.chemmater.1c02813

    Article  CAS  Google Scholar 

  19. Jeschke, P., Eur. J. Org. Chem., 2022, vol. 12, p. e202101513. https://doi.org/10.1002/ejoc.202101513

  20. Hammed, A.D.A., Jber, N.R., and Shihab, M.S., Ann. Med. Health Sci. Res., 2022, vol. 11, p. 49.

    Google Scholar 

  21. NʼGuessan, J.P.D.U., Delaye, P.O., Pénichon, M., Charvet, C.L., Neveu, C., Ouattara, M., and Allouchi, H., Bioorg. Med. Chem., 2017, vol. 25, p. 6695. https://doi.org/10.1016/j.bmc.2017.11.012

    Article  CAS  PubMed  Google Scholar 

  22. Bibik, I.V., Bibik, E.Y., Dotsenko, V.V., Frolov, K.A., Krivokolysko, S.G., Aksenov, N.A., and Ovcharov, S.N., Russ. J. Gen. Chem., 2021, vol. 91, p. 154. https://doi.org/10.1134/S107036322102002X

    Article  CAS  Google Scholar 

  23. Alizadeh, S.R. and Ebrahimzadeh, M.A., Mini Rev. Med. Chem., 2021, vol. 21, p. 2584. https://doi.org/10.2174/1389557521666210126143558

    Article  CAS  PubMed  Google Scholar 

  24. Zandvakili, T., Fatemi, S.J., Ebrahimipour, S.Y., Ebrahimnejad, H., Castro, J., Dusek, M., and Eigner, V., J. Mol. Struct., 2022, vol. 1249, p. 131525. https://doi.org/10.1016/j.molstruc.2021.131525

    Article  CAS  Google Scholar 

  25. Mandal, V., Ghosh, N.N., Mitra, P.K., and Mandal, S., Sci. Rep., 2022, vol. 12, p. 1. https://doi.org/10.1134/S1068162022060152

    Article  Google Scholar 

  26. Li, P., Yang, Z., and Wang, X., Russ. J. Gen. Chem., 2022, vol. 92, p. 132. https://doi.org/10.1134/S1070363222010182

    Article  CAS  Google Scholar 

  27. Alaysuy, O., Abumelha, H.M., Alsoliemy, A., Alharbi, A., Alatawi, N.M., Osman, H.E., and El-Metwaly, N.M., J. Mol. Struct., 2022, vol. 1259, p. 132748. https://doi.org/10.1016/j.molstruc.2022.132748

    Article  CAS  Google Scholar 

  28. Alam, M., Future Med. Chem., 2022, vol. 14, p. 343. https://doi.org/10.4155/fmc-2021-0275

    Article  CAS  Google Scholar 

  29. Sheena Mary, Y., Shyma Mary, Y., Armaković, S., Armaković, S.J., and Narayana, B., J. Biomol. Struct. Dyn., 2022, vol. 40, p. 2316. https://doi.org/10.1080/07391102.2020.1837677

    Article  CAS  PubMed  Google Scholar 

  30. Masila, V.M., Ndakala, A.J., Midiwo, J.O., Byamukama, R., Kamau, R.W., Kumarihamy, M., and Muhammad, I., Nat. Prod. Res., 2022, vol. 36, p. 3599. https://doi.org/10.1080/14786419.2020.1833201

    Article  CAS  Google Scholar 

  31. Tsujihara, T., Sasaki, R., Fukkoshi, M., Hatakeyama, S., Takehara, T., Suzuki, T., and Kawano, T., Tetrahedron Lett., 2022, vol. 95, p. 153724. https://doi.org/10.1016/j.tetlet.2022.153724

    Article  CAS  Google Scholar 

  32. Devi, V., Kumari, N., and Awasthi, P., Phosphorus Sulfur Silicon Relat. Elem., 2022, vol. 197, p. 1080. https://doi.org/10.1080/10426507.2022.2061970

    Article  CAS  Google Scholar 

  33. Abbas, Z., Tuli, H.S., Varol, M., Sharma, S., Sharma, H.K., Aggarwal, P., and Kumar, M., J. Iran. Chem. Soc., 2022, vol. 19, p. 1923. https://doi.org/10.1007/s13738-021-02430-6

    Article  CAS  Google Scholar 

  34. Jin, J., Okagu, O.D., and Udenigwe, C.C., Food Biophys., 2022, vol. 17, p. 198. https://doi.org/10.1007/s11483-021-09709-4

    Article  Google Scholar 

  35. Jain, A., De, S., and Barman, P., Res. Chem. Intermed., 2022, vol. 48, p. 2199. https://doi.org/10.1007/s11164-022-04708-7

    Article  CAS  Google Scholar 

  36. Muškinja, J., Janković, N., Ratković, Z., Bogdanović, G., and Bugarčić, Z., Mol. Divers., 2016, vol. 20, p. 591. https://doi.org/10.1007/s11030-016-9658-y

    Article  CAS  PubMed  Google Scholar 

  37. Sayed, G.H., Negm, N.A., Azab, M.E., and Anwer, K.E., Egypt. J. Chem., 2016, vol. 59, p. 663. https://doi.org/10.21608/ejchem.2016.1442

    Article  Google Scholar 

  38. Sayed, G.H., Azab, M.E., Anwer, K.E., Raouf, M.A., and Negm, N.A., J. Mol. Liq., 2018, vol. 252, p. 329. https://doi.org/10.1016/j.molliq.2017.12.156

    Article  CAS  Google Scholar 

  39. Sayed, G.H., Azab, M.E., Negm, N.A., and Anwer, K.E., J. Heterocycl. Chem., 2018, vol. 55, p. 1615. https://doi.org/10.1002/jhet.3196

    Article  CAS  Google Scholar 

  40. Sayed, G.H., Azab, M.E., and Anwer, K.E., J. Heterocycl. Chem., 2019, vol. 56, p. 2121. https://doi.org/10.1002/jhet.3606

    Article  CAS  Google Scholar 

  41. Anwer, K.E. and Sayed, G.H., J. Heterocycl. Chem., 2020, vol., 57, p. 2339. https://doi.org/10.1134/S1070428022060203

  42. Mohamed, S.S., Dauoud, N.T., Shaban, S.N., Abdelghaffar, N.F., Sayed, G.H., and Anwer, K.E., Egypt. J. Chem., 2021, vol. 64, p. 3187. https://doi.org/10.21608/EJCHEM.2021.62916.3350

    Article  Google Scholar 

  43. Anwer, K.E., Farag, A.A., Mohamed, E.A., Azmy, E.M., and Sayed, G.H., J. Ind. Eng. Chem., 2021, vol. 97, p. 523. https://doi.org/10.1016/j.jiec.2021.03.016

    Article  CAS  Google Scholar 

  44. Mohamed, S.S., Shabaan, S.N., Abdelghaffar, N.F., Dauoud, N.T., Sayed, G.H., and Anwer, K.E., J. Basic Environmental Sci., 2021, vol. 8, p. 124.

    CAS  Google Scholar 

  45. Farag, A.A., Mohamed, E.A., Sayed, G.H., and Anwer, K.E., J. Mol. Liq., 2021, vol. 330, p. 115705. https://doi.org/10.1016/j.molliq.2021.115705

    Article  CAS  Google Scholar 

  46. Naguib, H.M., Shaban, S.N., Abdelghaffar, N.F., Dauoud, N.T., Sayed, G.H., and Anwer, K.E., J. Basic Environmental Sci., 2021, vol. 8, p. 151.

    CAS  Google Scholar 

  47. Essa, B.M., Selim, A.A., Sayed, G.H., and Anwer, K.E., Bioorg. Chem., 2022, vol. 125, p. 105846. https://doi.org/10.1016/j.bioorg.2022.105846

    Article  CAS  PubMed  Google Scholar 

  48. Anwer, K.E., Sayed, G.H., and Ramadan, R.M., J. Mol. Struct., 2022, vol. 1256, p. 132513. https://doi.org/10.1016/j.molstruc.2022.132513

    Article  CAS  Google Scholar 

  49. Ebrahem, E.M., Sayed, G.H., Gad, G.N., Anwer, K.E., and Selim, A.A., Cancer Nanotechnol., 2022, vol. 13, p. 1. https://doi.org/10.1007/s10967-022-08412-z

    Article  CAS  Google Scholar 

  50. Mosmann, T., J. Immunol. Methods, 1983, vol. 65, p. 55. https://doi.org/10.1016/0022-1759(83)90303-4

    Article  CAS  PubMed  Google Scholar 

  51. Abo-Ashour, M.F., Eldehna, W.M., Nocentini, A., Bonardi, A., Bua, S., Ibrahim, H.S., Elaasser, M.M., Kryštof, V., Jorda, R., Gratteri, P., Abou-Seri, S.M., and Supuran, C.T., Eur J Med Chem., 2019, vol. 184, p. 111768. https://doi.org/10.1016/j.ejmech.2022.114190

    Article  CAS  PubMed  Google Scholar 

  52. Amin, B.H., Ahmed, H.Y., and Abd El-Aziz, M.M., N. Egypt. J. Microbiol, 2018, vol. 50, p. 50.

    Google Scholar 

  53. Amin, B.H., Abou-Dobara, M.I., Diab, M.A., Gomaa, E.A., El-Mogazy, M.A., El-Sonbati, A.Z., El-Ghareib, M.S., Hussien, M.A., and Salama, H.M., Appl. Organomet. Chem., 2020, vol. 34, p. 5689. https://doi.org/10.1002/aoc.5689

    Article  CAS  Google Scholar 

  54. Basma, H.A., Asmaa, A., May, A., Nour, E.A., Dalia, M., Sara, Al-Ashaal, b., Areej, A., Al-Khalaf, and Wael, N.H., J. King Saud Univ. Sci., 2022, vol. 34, p. 102095. https://doi.org/10.1016/j.jksus.2022.102095

    Article  Google Scholar 

  55. Sayed, R., Safwat, N.A., Amin, B.H., and Yosri, M., J. Taibah Univ. Med. Sci., 2022, vol. 17, p. 765. https://doi.org/10.1016/j.jtumed.2021.12.016

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. E. Anwer.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehany, M.M., Hammam, O.A., Mohamed, S.S. et al. Design, Green Synthesis, and Anticancer Activity of Novel Nicotinonitrile Derivatives. Russ J Org Chem 60, 329–341 (2024). https://doi.org/10.1134/S1070428024020167

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428024020167

Keywords:

Navigation