Skip to main content
Log in

Synthesis of Glycyl-(S)-5-hydroxynorvaline

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

The dipeptide glycyl-(S)-5-hydroxynorvaline was obtained from 1-tert-butyl 5-methyl N-Boc-glycyl-(S)-glutamate via saponification, reduction of the activated 5-carboxy group with sodium borohydride, removal of the N-Boc and OBut protecting groups by refluxing in aqueous dioxane. Using the example of the synthesis of (S)-5-hydroxynorvaline, it was shown that the used sequence of chemical transformations is not accompanied by racemization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Scheme
Scheme
Scheme

REFERENCES

  1. Carmo-Silva, A.E., Keys, A.J., Beale, M.H., Ward, J.L., Baker, J.M., Hawkins, N.D., Arrabaça, M.C., and Parry, M.A.J., Phytochemistry, 2009, vol. 70, p. 664. https://doi.org/10.1016/j.phytochem.2009.03.001

    Article  CAS  PubMed  Google Scholar 

  2. Yan, J., Lipka, A.E., Schmelz, E.A., Buckler, E.S., and Jander, G., J. Exp. Bot., 2015, vol. 66, p. 593. https://doi.org/10.1093/jxb/eru385

    Article  CAS  PubMed  Google Scholar 

  3. Ayala, A. and Cutler, R.G., Free Radical Biol. Med., 1996, vol. 21, p. 65. https://doi.org/10.1016/0891-5849(95)02220-1

    Article  CAS  Google Scholar 

  4. Hannachi, J.-C., Vidal, J., Mulatier, J.-C., and Collet, A., J. Org. Chem., 2004, vol. 69, p. 2367. https://doi.org/10.1021/jo035700b

    Article  CAS  PubMed  Google Scholar 

  5. Elbatrawi, Y.M., Kang, C.W., and Del Valle, J.R., Org. Lett., 2018, vol. 20, p. 2707. https://doi.org/10.1021/acs.orglett.8b00912

    Article  CAS  PubMed  Google Scholar 

  6. Krasnov, V.P., Levit, G.L., Musiyak, V.V., Gruzdev, D.A., and Charushin, V.N., Pure Appl. Chem., 2020, vol. 92, p. 1277. https://doi.org/10.1515/pac-2019-1214

    Article  CAS  Google Scholar 

  7. Olsen, R.K., Ramasamy, K., and Emery, T., J. Org. Chem., 1984, vol. 49, p. 3527. https://doi.org/10.1021/jo00193a016

    Article  CAS  Google Scholar 

  8. García, M., Serra, A., Rubiralta, M., Diez, A., Segarra, V., Lozoya, E., Ryder, H., and Palacios, J.M., Tetrahedron Asymmetry, 2000, vol. 11, p. 991. https://doi.org/10.1016/S0957-4166(00)00020-3

    Article  Google Scholar 

  9. Wang, L., Zha, Z., Qu, W., Qiao, H., Lieberman, B.P., Plössl, K., and Kung, H.F., Nucl. Med. Biol., 2012, vol. 39, p. 933. https://doi.org/10.1016/j.nucmedbio.2012.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Longobardo, L., Cecere, N., DellaGreca, M., and de Paola, I., Amino Acids, 2013, vol. 44, p. 443. https://doi.org/10.1007/s00726-012-1352-5

    Article  CAS  PubMed  Google Scholar 

  11. Muetterties, C., Janiga, A., Huynh, K.T., Pisano, M.G., Tripp, V.T., Young, D.D., and Poutsma, J.C., Int. J. Mass Spectrom., 2014, vol. 369, p. 71. https://doi.org/10.1016/j.ijms.2014.06.010

    Article  CAS  Google Scholar 

  12. Wang, J., Liang, Y.-L., and Qu, J., Chem. Commun., 2009, p. 5144. https://doi.org/10.1039/b910239f

  13. Zinelaabidine, C., Souad, O., Zoubir, J., Malika, B., and Nour-Eddine, A., Int. J. Chem., 2012, vol. 4, p. 73. https://doi.org/10.5539/ijc.v4n3p73

    Article  CAS  Google Scholar 

  14. Khelili, S., de Tullio, P., Lebrun, P., Fillet, M., Antoine, M.-H., Ouedraogo, R., Dupont, L., Fontaine, J., Felekidis, A., Leclerc, G., Delarge, J., and Pirotte, B., Bioorg. Med. Chem., 1999, vol. 7, p. 1513. https://doi.org/10.1016/S0968-0896(99)00082-6

    Article  CAS  PubMed  Google Scholar 

  15. Gruzdev, D.A., Levit, G.L., Ol’shevskaya, V.A., and Krasnov, V.P., Russ. J. Org. Chem., 2017, vol. 53, p. 769. https://doi.org/10.1134/S1070428017050190

    Article  CAS  Google Scholar 

  16. Barlos, K., Mamos, P., Papaioannou, D., and Patrianakou, S., J. Chem. Soc., Chem. Commun., 1987, p. 1583. https://doi.org/10.1039/C39870001583

Download references

ACKNOWLEDGMENTS

The work was carried out using the equipment of the Center for Collective Use "Spectroscopy and Analysis of Organic Compounds" at the Postovsky Institute of Organic Synthesis of the Russian Academy of Sciences (Ural Branch).

Funding

The work was financially supported by the Russian Science Foundation (project no. 19-13-00231-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Chulakov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated from Zhurnal Organicheskoi Khimii, 2023, Vol. 59, No. 11, pp. 1507–1512 https://doi.org/10.31857/S0514749223110149.

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chulakov, E.N., Tumashov, A.A., Gruzdev, D.A. et al. Synthesis of Glycyl-(S)-5-hydroxynorvaline. Russ J Org Chem 59, 2003–2007 (2023). https://doi.org/10.1134/S1070428023110222

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428023110222

Keywords:

Navigation