Skip to main content
Log in

Synthesis, Characterization and Antimicrobial Evaluation of Novel Imidazo[1,2-a]pyrazine-linked 1,2,3-Triazole Derivatives via a Click Chemistry Approach

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

This work summarizes the results of the synthesis of imidazo[1,2-a]pyrazine-linked 1,2,3-triazole derivatives and provides evidence for the importance of this motif as a lead structure for novel drug discovery. The novel synthetic approach to imidazo[1,2-a]pyrazin–1,2,3-triazole derivatives, developed in this work, is based on the click chemistry approach. Nine novel hybrid compounds were synthesized and characterized by IR and 1H and 13C NMR spectroscopy, mass spectrometry, and elemental analysis. The synthesized products were tested for antimicrobial activity against E. coli, P. aeruginosa, E. aerogenes, B. megaterium, S. aureus, and B. subtilis bacterial strains and A. niger, and A. flavus fungal strains. The antimicrobial activity was evaluated in terms of the minimum inhibitory concentration (MIC). Some of the test compounds showed a high activity antibacterial and antifungal activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Scheme 1.

REFERENCES

  1. Enoch, D.A., Ludlam, H.A., and Brown, N.M., J. Med. Microbiol., 2006, vol. 55, p. 809. https://doi.org/10.1099/jmm.0.46548-0

    Article  CAS  PubMed  Google Scholar 

  2. Sheehan, D.J., Hitchcock, C.A., and Sibley, C.M., Clin. Microbiol. Rev., 1999, vol. 12, p. 40. https://doi.org/10.1128/cmr.12.1.40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Georgopapadakou, N.H. and Walsh, T.J., Antimicrob. Agents Chemother., 1996, vol. 40, p. 279. https://doi.org/10.1128/aac.40.2.279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pfaller, M.A., Am. J. Med., 2012, vol. 125, p. S3. https://doi.org/10.1016/j.amjmed.2011.11.001

  5. Temple Jr, D.L., Yevich, J.P., Catt, J.D., Owens, D., Hanning, C., Covington, R.R., Seidehamel, R.J., and Dungan, K.W., J. Med. Chem., 1980, vol. 23, p. 1188. https://doi.org/10.1021/jm00185a008

    Article  CAS  PubMed  Google Scholar 

  6. Schneller, S.W. and Luo, J.-K., J. Org. Chem., 1980, vol. 45, p. 4045. https://doi.org/10.1021/jo01308a021

    Article  CAS  Google Scholar 

  7. Glennon, R.A., Rogers, M.E., Smith, J.D., El-Said, M.K., and Egle, J.L., J. Med. Chem., 1981, vol. 24, p. 658. https://doi.org/10.1021/jm00138a002

    Article  CAS  PubMed  Google Scholar 

  8. Rimoli, M.G., Avallone, L., De Caprariis, P., Luraschi, E., Abignente, E., Filippelli, W., Berrino, L., and Rossi, F., Eur. J. Med. Chem., 1997, vol. 32, p. 195. https://doi.org/10.1016/S0223-5234(97)83971-2

    Article  CAS  Google Scholar 

  9. Lumma Jr, W.C., Randall, W.C., Cresson, E.L., Huff, J.R., Hartman, R.D., and Lyon, T.F., J. Med. Chem., 1983, vol. 26, p. 357. https://doi.org/10.1021/jm00357a009

    Article  CAS  PubMed  Google Scholar 

  10. Nitesh, S., Vaibhav, J., Ranjan, P., Somnath, K., Sarita, D., Neha, T., Purusottam, M., Garima, P., Maneesh, K., and Dipon, D., Med. Chem. Commun., 2014, vol. 5, p. 766. https://doi.org/10.1039/C3MD00357D

    Article  Google Scholar 

  11. McNamara, C.W., Lee, M., Lim, C.S., Lim, S.H., Roland, J., Nagle, A., Simon, O., Yeung, B.K.S., Chatterjee, A.K., and McCormack, S.L., Nature, 2013, vol. 504, p. 248. https://doi.org/10.1038/nature12782

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Teranishi, K., Nishiguchi, T., and Ueda, H., Carbohydr. Res., 2003, vol. 338, p. 987. https://doi.org/10.1016/S0008-6215(03)00022-3

    Article  CAS  PubMed  Google Scholar 

  13. Teranishi, K., Bioorg. Chem., 2007, vol. 35, p. 82. https://doi.org/10.1016/j.bioorg.2006.08.003

    Article  CAS  PubMed  Google Scholar 

  14. Bistrović, A., Stipaničev, N., Opačak-Bernardi, T., Jukić, M., Martinez, S., Glavaš-Obrovac, L., and Raić-Malić, S., New J. Chem., 2017, vol. 41, p. 7531. https://doi.org/10.1039/C7NJ01469D

    Article  Google Scholar 

  15. Xu, Z., Zhao, S.-J., and Liu, Y., Eur. J. Med. Chem., 2019, vol. 183, p. 111700. https://doi.org/10.1016/j.ejmech.2019.111700

    Article  CAS  PubMed  Google Scholar 

  16. Tian, Y., Liu, Z., Liu, J., Huang, B., Kang, D., Zhang, H., De Clercq, E., Daelemans, D., Pannecouque, C., and Lee, K.-H., Eur. J. Med. Chem., 2018, vol. 151, p. 339. https://doi.org/10.1016/j.ejmech.2018.03.059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yadav, P., Yadav, J.K., Agarwal, A., and Awasthi, S.K., RSC Adv., 2019, vol. 9, p. 31969. https://doi.org/10.1039/C9RA04192C

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dheer, D., Singh, V., and Shankar, R., Bioorg. Chem., 2017, vol. 71, p. 30. https://doi.org/10.1016/j.bioorg.2017.01.010

    Article  CAS  PubMed  Google Scholar 

  19. Kolb, H.C. and Sharpless, K.B., Drug Discov. Today, 2003, vol. 8, p. 1128. https://doi.org/10.1016/S1359-6446(03)02933-7

    Article  CAS  PubMed  Google Scholar 

  20. Tron, G.C., Pirali, T., Billington, R.A., Canonico, P.L., Sorba, G., and Genazzani, A.A., Med. Res. Rev., 2008, vol. 28, p. 278. https://doi.org/10.1002/med.20107

    Article  CAS  PubMed  Google Scholar 

  21. Agalave, S.G., Maujan, S.R., and Pore, V.S., Chem. Asian J., 2011, vol. 6, p. 2696. https://doi.org/10.1002/asia.201100432

    Article  CAS  PubMed  Google Scholar 

  22. Meghani, N.M., Amin, H.H., and Lee, B.-J., Drug Discov. Today, 2017, vol. 22, p. 1604. https://doi.org/10.1016/j.drudis.2017.07.007

    Article  CAS  PubMed  Google Scholar 

  23. Rostovtsev, V.V, Green, L.G., Fokin, V.V, and Sharpless, K.B., Angew. Chemie., 2002, vol. 114, p. 2708. https://doi.org/10.1002/1521-3757(20020715)114:14%3C2708::AID-ANGE2708%3E3.0.CO;2-0

    Article  ADS  Google Scholar 

  24. Bozorov, K., Zhao, J., and Aisa, H.A., Bioorg. Med. Chem., 2019, vol. 27, p. 3511. https://doi.org/10.1016/j.bmc.2019.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vatmurge, N.S., Hazra, B.G., Pore, V.S., Shirazi, F., Chavan, P.S., and Deshpande, M.V., Bioorg. Med. Chem. Lett., 2008, vol. 18, p. 2043. https://doi.org/10.1016/j.bmcl.2008.01.102

    Article  CAS  PubMed  Google Scholar 

  26. Duan, Y.-C., Ma, Y.-C., Zhang, E., Shi, X.-J., Wang, M.-M., Ye, X.-W., and Liu, H.-M., Eur. J. Med. Chem., 2013, vol. 62, p. 11. https://doi.org/10.1016/j.ejmech.2012.12.046

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, J., Zhang, H., Cai, W., Yu, L., Zhen, X., and Zhang, A., Bioorg. Med. Chem., 2009, vol. 17, p. 4873. https://doi.org/10.1016/j.bmc.2009.06.019

    Article  CAS  PubMed  Google Scholar 

  28. Huber, D., Hübner, H., and Gmeiner, P., J. Med. Chem., 2009, vol. 52, p. 6860. https://doi.org/10.1021/jm901120h

    Article  CAS  PubMed  Google Scholar 

  29. Soumya, T.V, Ajmal, C.M., and Bahulayan, D., Bioorg. Med. Chem. Lett., 2017, vol. 27, p. 450. https://doi.org/10.1016/j.bmcl.2016.12.044

    Article  CAS  PubMed  Google Scholar 

  30. Chen, H., Li, Z., and Han, Y., J. Agric. Food Chem., 2000, vol. 48, p. 5312. https://doi.org/10.1021/jf991065s

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Olszewski, T.K., and Boduszek, B., Tetrahedron, 2010, vol. 66, p. 8661. https://doi.org/10.1016/j.tet.2010.09.026

    Article  CAS  Google Scholar 

  32. Rammurthy, B., Swamy, P., Naresh, M., Srujana, K., Durgaiah, C., Sai, G. K., and Narender, N., New J. Chem., 2017, vol. 41, p. 3710. https://doi.org/10.1039/C7NJ00052A

    Article  CAS  Google Scholar 

  33. Wayne, P.A., National Committee for Clinical Laboratory Standards, 2002, 12th informational supplement. M100-S12.

Download references

ACKNOWLEDGMENTS

We would like to convey our gratitude to the Department of Chemistry, Shri M. & N. Virani Science College (Autonomous), and Rajkot, Gujarat, India for providing laboratory facilities to carry out the synthesis and antimicrobial screening of the compounds. We are also grateful to the National Facility for Drug Discovery Complex (NFDD) for instrumentation support.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Parmar.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parmar, R.V., Vadodaria, M.S. Synthesis, Characterization and Antimicrobial Evaluation of Novel Imidazo[1,2-a]pyrazine-linked 1,2,3-Triazole Derivatives via a Click Chemistry Approach. Russ J Org Chem 59, 1927–1939 (2023). https://doi.org/10.1134/S1070428023110118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428023110118

Keywords:

Navigation