Skip to main content
Log in

Synthesis and Reactions of Allylic Azides of the Adamantane Series

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

A mixture of a nucleophilic substitution product and its isomeric azide resulting from [3,3]-sigmatropic rearrangement was obtained as a result of the reaction of hindered bromides of the adamantane series with sodium azide. Epoxidation reactions of allylic azides of the adamantane series were investigated. The reduction of the syntesized trans-2-(adamantan-1-yl)-3-(azidomethyl)oxirane with lithium alumohydride gave (S*)-(adamantan-1-yl)[(S*)-aziridin-2-yl]methanol. Under heating with HCl, the latter underwent aziridine ring opening to form (1S*,2R*)-1-(adamantan-1-yl)-3-chloro-1-hydroxypropan-2-aminium chloride.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Scheme 1.
Scheme 2.
Scheme 3.
Scheme 4.
Scheme 5.
Scheme 6.

REFERENCES

  1. Bräse, S., Gil, C., Knepper, K., and Zimmermann, V., Angew. Chem. Int. Ed., 2005, vol. 44, p. 5188. https://doi.org/10.1002/anie.200400657

    Article  CAS  Google Scholar 

  2. Organic Azides: Syntheses and Applications. Bräse, S., and Banert, K., Eds., New York: Wiley, 2010.

  3. Sivaguru, P., Ning, Y., and Bi, X., Chem. Rev., 2021, vol. 121, p. 4253. https://doi.org/10.1021/acs.chemrev.0c01124

    Article  CAS  PubMed  Google Scholar 

  4. Beenhouwer, D.O., Rankin, J.A., and Mellors, J.W., Antiviral Res., 1992, vol. 19, p. 43. https://doi.org/10.1016/0166-3542(92)90055-a

    Article  CAS  PubMed  Google Scholar 

  5. Kumar, R., Wiebe, L.I., and Knaus, E.E., J. Med. Chem., 1993, vol. 36, p. 2470. https://doi.org/10.1021/Jm00069A004

    Article  CAS  PubMed  Google Scholar 

  6. Sun, L., Peng, Y., Yu, W., Zhang, Y., Liang, L., Song, C., Hou, J., Qiao, Y., Wang, Q., Chen, J., Wu, M., Zhang, D., Li, E., Han, Z., Zhao, Q., Jin, X., Zhang, B., Huang, Z., Chai, J., Wang, J.-H., and Chang, J., J. Med. Chem., 2020, vol. 63, p. 8554. https://doi.org/10.1021/acs.jmedchem.0c00940

    Article  CAS  PubMed  Google Scholar 

  7. Bhuta, P., Chung, H.L., Hwang, J.-S., and Zemlicka, J., J. Med. Chem., 1980, vol. 23, p. 1299. https://doi.org/10.1021/jm00186a004

    Article  CAS  PubMed  Google Scholar 

  8. Gagnon, D., Lauzon, S., Godbout, C., and Spino, C., Org. Lett., 2005, vol. 7, p. 4769. https://doi.org/10.1021/ol052034n

    Article  CAS  PubMed  Google Scholar 

  9. Liu, R., Gutierrez, O., Tantillo, D.J., and Aube, J., J. Am. Chem. Soc., 2012, vol. 134, p. 6528. https://doi.org/10.1021/ja300369c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Reddy, P. S., Ravi, V., and Sreedhar, B., Tetrahedron Lett., 2010, vol. 51, p. 4037. https://doi.org/10.1016/j.tetlet.2010.05.097

    Article  CAS  Google Scholar 

  11. Tjeng, A.A., Handore, K.L., and Batey, R.A., Org. Lett., 2020, vol. 22, p. 3050. https://doi.org/10.1021/acs.orglett.0c00801

    Article  CAS  PubMed  Google Scholar 

  12. Carlson, A.S. and Topczewski, J.J., Org. Biomol. Chem., 2019, vol. 17, p. 4406. https://doi.org/10.1039/C8OB03178A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ott, A.A. and Topczewski, J.J., Arkivoc, 2019, vol. i, p. 1. https://doi.org/10.24820/ark.5550190.p010.819

  14. Vallejos, M.M. and Labadie, G.R., RSC Adv., 2020, vol. 10, p. 4404. https://doi.org/10.1039/c9ra10093h

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  15. Gagneux, A., Winstein, S., and Young, W.G., J. Am. Chem. Soc., 1960, vol. 82, p. 5956. https://doi.org/10.1021/ja01507a045

    Article  CAS  Google Scholar 

  16. VanderWerf, C.A. and Heasley, V.L., J. Org. Chem., 1966, vol. 31, p. 3534. https://doi.org/10.1021/jo01349a016

    Article  CAS  Google Scholar 

  17. Ott, A.A., Packard, M.H., Ortuno, M.A., Johnson, A., Suding, V.P., Cramer, C.J., and Topczewski, J.J., J. Org. Chem., 2018, vol. 83, p. 8214. https://doi.org/10.1021/acs.joc.8b00961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ott, A.A. and Topczewski, J.J., Org. Lett., 2018, vol. 20, p. 7253. https://doi.org/10.1021/acs.orglett.8b03168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Feldman, A.K., Colasson, B., Sharpless, K.B., and Fokin, V.V., J. Am. Chem. Soc., 2005, vol. 127, p. 13444. https://doi.org/10.1021/ja050622q

    Article  CAS  PubMed  Google Scholar 

  20. Liu, R., Zhang, Y., and Xu, J., Chem. Commun., 2021, vol. 57, p. 8913. https://doi.org/10.1039/d1cc02520a

    Article  CAS  Google Scholar 

  21. Vekariya, R.H., Liu, R., and Aubé, J., Org. Lett., 2014, vol. 16, p. 1844. https://doi.org/10.1021/ol500011f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wanka, L., Iqbal, K., and Schreiner, P.R., Chem. Rev., 2013, vol. 113, p. 3516. https://doi.org/10.1021/cr100264t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shiryaev, V.A., Skomorohov, M.Yu, Leonova, M.V., Bormotov, N.I., Serova, O.A., Shishkina, L.N., Agafonov, A.P., Maksyutov, R.A., and Klimochkin, Yu.N., Eur. J. Med. Chem., 2021, vol. 221, p. 113485. https://doi.org/10.1016/j.ejmech.2021.113485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shiryaev, V.A., Radchenko, E.V., Palyulin, V.A., Zefirov, N.S., Bormotov, N.I., Serova, O.A., Shishkina, L.N., Baimuratov, M.R., Bormasheva, K.M., Gruzd, Y.A., Ivleva, E.A., Leonova, M.V., Lukashenko, A.V., Osipov, D.V., Osyanin, V.A., Reznikov, A.N., Shadrikova, V.A., Sibiryakova, A.E., Tkachenko, I.M., and Klimochkin, Y.N., Eur. J. Med. Chem., 2018, vol. 158, p. 214. https://doi.org/10.1016/j.ejmech.2018.08.009

    Article  CAS  PubMed  Google Scholar 

  25. Onajole, O.K., Govender, P., van Helden, P.D., Kruger, H.G., Maguire, G.E.M., Wiid, I., and Govender, T., Eur. J. Med. Chem., 2010, vol. 45, p. 2075. https://doi.org/10.1016/j.ejmech.2010.01.046

    Article  CAS  PubMed  Google Scholar 

  26. Augeri, D.J., Robl, J.A., Betebenner, D.A., Magnin, D.R., Khanna, A., Robertson, J.G., Wang, A., Simpkins, L.M., Taunk, P., Huang, Q., Han, S.-P., Abboa-Offei, B., Cap, M., Xin, L., Tao, L., Tozzo, E., Welzel, G.E., Egan, D.M., Marcinkeviciene, J., Chang, S.Y., Biller, S.A., Kirby, M.S., Parker, R.A., and Hamann, L.G., J. Med. Chem., 2005, vol. 48, p. 5025. https://doi.org/10.1021/jm050261p

    Article  CAS  PubMed  Google Scholar 

  27. Duttaroy, A., Voelker, F., Merriam, K., Zhang, X., Ren, X., Subramanian, K., Hughes, T.E., and Burkey, B.F., Eur. J. Pharmacol., 2011, vol. 650, p. 703. https://doi.org/10.1016/j.ejphar.2010.10.062

    Article  CAS  PubMed  Google Scholar 

  28. Leonova, M.V., Baimuratov, M.R., Golovin, E.V., and Klimochkin, Yu.N., Russ. J. Org. Chem., 2014, vol. 50, p. 183. https://doi.org/10.1134/S1070428014020079

    Article  CAS  Google Scholar 

  29. Baimuratov, M.R., Leonova, M.V., Shiryaev, V.A., and Klimochkin, Y.N., Tetrahedron Lett., 2016, vol. 57, p. 5317. https://doi.org/10.1016/j.tetlet.2016.10.059

    Article  CAS  Google Scholar 

  30. Leonova, M.V., Baimuratov, M.R., and Klimochkin, Yu.N., Russ. J. Org. Chem., 2014, vol. 50, p. 1268. https://doi.org/10.1134/S107042801409005X

    Article  CAS  Google Scholar 

  31. Brown, H.C., Bartholomay, Jr.H., and Taylor, M.D., J. Am. Chem. Soc., 1944, vol. 66, p. 435. https://doi.org/10.1021/ja01231a039

    Article  CAS  Google Scholar 

  32. Tidwell, T.T., Tetrahedron, 1978, vol. 34, p. 1855. https://doi.org/10.1016/0040-4020(78)80089-1

    Article  CAS  Google Scholar 

  33. Leonova, M.V., Belaya, N.V., Baimuratov, M.R., and Klimochkin, Y.N., Russ. J. Org. Chem., 2018, vol. 54, p. 1643. https://doi.org/10.1134/S1070428018110040

    Article  CAS  Google Scholar 

  34. Ibuka, T., Chem. Soc. Rev., 1998, vol. 27, p. 145. https://doi.org/10.1039/A827145Z

    Article  CAS  Google Scholar 

  35. Ibuka, T., Nakai, K., Habashita, H., Hotta, Y., Otaka, A., Tamamura, H., Fujii, N., Mimura, N., Miwa, Y., Chounan, Y., and Yamamoto, Y., J. Org. Chem., 1995, vol. 60, p. 2044. https://doi.org/10.1021/jo00112a028

    Article  CAS  Google Scholar 

  36. Najime, R., Pilard, S., and Vaultier, M., Tetrahedron Lett., 1992, vol. 33, p. 5351. https://doi.org/10.1016/S0040-4039(00)79090-3

    Article  CAS  Google Scholar 

  37. Leonova, M.V., Permyakova, L.P., Baimuratov, M.R., and Klimochkin, Yu.N., Russ. J. Org. Chem., 2020, vol. 56, p. 631. https://doi.org/10.31857/S0514749220040114

    Article  CAS  Google Scholar 

Download references

Funding

The work was financially supported by the Russian Science Foundation (project no. 21-73-20103). The spectral data were obtained with the support of the Ministry of Science and Higher Education of the Russian Federation (subject no. FSSE-2023-0003) in the framework of the state assignment for the Samara State Technical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Leonova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated from Zhurnal Organicheskoi Khimii, 2023, Vol. 59, No. 11, pp. 1455–1464 https://doi.org/10.31857/S0514749223110071.

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leonova, M.V., Baimuratov, M.R. & Klimochkin, Y.N. Synthesis and Reactions of Allylic Azides of the Adamantane Series. Russ J Org Chem 59, 1892–1900 (2023). https://doi.org/10.1134/S1070428023110076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428023110076

Keywords:

Navigation