Skip to main content
Log in

Mechanochemical Fluorination of Naproxen and Its Salts with F–TEDA–BF4

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

The mechanochemical fluorination of naproxen and its salts (Li, Na, and K) with 1-(chloromethyl)-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate) (Selectfluor, F–TEDA–BF4) was studied. The reaction of naproxen with an excess of Selectfluor gives 2-(5,5-difluoro-6-oxo-5,6-dihydronaphthalen-2-yl)propionic acid in high yield. Small additives of Al2O3, SiO2, M2CO3 (M = Na, K, Rb, Cs), ionic liquids (ILs), crown ethers, and N-bases accelerate the reaction of naproxen with Selectfluor and increases the monofluorination/difluorination product ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Ilyas, S., Jilani, K., Sikandar, M., Siddiq, S., Riaz, M., Naveed, A., Bibi, I., Nawaz, H., Irfan, M., and Asghar, A., Dose Response Inter. J., 2020, vol. 18, p. 1. https://doi.org/10.1177/1559325819899259

    Article  CAS  Google Scholar 

  2. Saji, R.S., Prasana, J.C., Muthu, S., George, J., Kuruvilla, T.K., and Raajaraman, B.R., Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, vol. 226, p. 117614. https://doi.org/10.1016/j.saa.2019.117614

    Article  CAS  PubMed  Google Scholar 

  3. Mohammed, A., Yarla, N.S., Madka, V., and Rao, C.V., Int. J. Mol. Sci., 2018, vol. 19, p. 2332. https://doi.org/10.3390/ijms19082332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hui, D.S., Lee, N., Chan, P.K., and Beigel, J.H., Antivir. Res., 2018, vol. 150, p. 202. https://doi.org/10.1016/j.antiviral.2018.01.002

    Article  CAS  PubMed  Google Scholar 

  5. Lejal, N., Tarus, B., Bouguyon, E., Chenavas, S., Bertho, N., Delmas, B., Ruigrok, R.W.H., Primo, C.D., and Slama-Schwok, A., Antimicrob. Agents Chemother., 2013, vol. 57, p. 2231. https://doi.org/10.1128/AAC.02335-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yerien, D.E., Bonesi, S., and Postigo, A., Org. Biomol. Chem., 2016, vol. 14, p. 398. https://doi.org/10.1039/c6ob00764c

    Article  Google Scholar 

  7. Zaikin, P.A. and Borodkin, G.I., Late-Stage Fluorination of Bioactive Molecules and Biologically-Relevant Substrates, Postigo, A., Ed., Amsterdam: Elsevier, 2019, p. 105.

  8. Gillis, E.P., Eastman, K.J., Hill, M.D., Donnelly, D.J., and Meanwell, N.A., J. Med. Chem., 2015, vol. 58, p. 831559. https://doi.org/10.1021/acs.jmedchem.5b00258

    Article  CAS  Google Scholar 

  9. Alvarez, F.S., USA Patent no. 3637767A, 1972.

  10. Schlosser, M., Michel, D., Guo, Z.-w., and Sih, C.J., Tetrahedron, 1996, vol. 52, p. 8257. https://doi.org/10.1016/0040-4020(96)00411-5

    Article  CAS  Google Scholar 

  11. Goj, O., Kotila, S., and Haufe, G., Tetrahedron, 1996, vol. 52, p. 12761. https://doi.org/10.1016/0040-4020(96)00758-2

    Article  CAS  Google Scholar 

  12. Fujisawa, H., Fujiwara, T., Takeuchi, Y., and Omata, K., Chem. Pharm. Bull., 2005, vol. 53, p. 524. https://doi.org/10.1248/cpb.53.524

    Article  CAS  Google Scholar 

  13. Borodkin, G.I., Elanov, I.R., Gatilov, Yu.V., and Shubin, V.G., J. Fluor. Chem., 2019, vol. 228, p. 109412. https://doi.org/10.1016/j.jfluchem.2019.109412

    Article  CAS  Google Scholar 

  14. Tan, D. and Friščić T., Eur. J. Org. Chem., 2018, p. 18. https://doi.org/10.1002/ejoc.201700961

  15. Borodkin, G.I. and Shubin, V.G., Russ. J. Org. Chem., 2021, vol. 57, p. 1369. https://doi.org/10.1134/S1070428021090013

    Article  CAS  Google Scholar 

  16. Zaikin, P.A., Dyan, Ok, Ton, Elanov, I.R., and Borodkin, G.I., Molecules, 2021, vol. 26, p. 5756. https://doi.org/10.3390/molecules26195756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gomollón-Bel, F., Chem. Int., 2019, vol. 41, p. 12. https://doi.org/10.1515/ci-2019-0203

    Article  CAS  Google Scholar 

  18. Ionic Liquids in Synthesis, Wasserscheid, P., and Welton, T., Eds., Weinheim: Wiley, 2008. https://doi.org/10.1002/9783527621194

  19. Sandhu, S. and Sandhu, J.S., Green Chem. Lett. Rev., 2011, vol. 4, p. 289. https://doi.org/10.1080/17518253.2011.572294

    Article  CAS  Google Scholar 

  20. Maton, C., Vos, N.D., and Stevens, C.V., Chem. Soc. Rev., 2013, vol. 42, p. 5963. https://doi.org/10.1039/c3cs60071h

    Article  CAS  PubMed  Google Scholar 

  21. Borodkin, G.I. and Shubin, V.G., Russ. J. Org. Chem., 2006, vol. 42, p. 1745. https://doi.org/10.1134/S1070428006120013

    Article  CAS  Google Scholar 

  22. Laali, K.K. and Borodkin, G.I., J. Chem. Soc., Perkin Trans. 2, 2002, p. 953. https://doi.org/10.1039/b111725d

  23. Heravi, M.R.P., J. Fluor. Chem., 2008, vol. 129, p. 217. https://doi.org/10.1016/j.jfluchem.2007.11.006

    Article  CAS  Google Scholar 

  24. Pavlinac, J., Zupan, M., Laali, K.K., and Stavber, S., Tetrahedron, 2009, vol. 65, p. 5625. https://doi.org/10.1016/j.tet.2009.04.092

    Article  CAS  Google Scholar 

  25. Bogautdinov, R.P., Fidarov, A.F., Morozkina, S.N., Zolotarev, A.A., Starova, G.L., Selivanov, S.I., and Shavva, A.G., J. Fluor. Chem., 2014, vol. 168, p. 218. https://doi.org/10.1016/j.jfluchem.2014.09.030

    Article  CAS  Google Scholar 

  26. Laali, K.K., Arkivoc, 2016, vol. i, p. 50. https://doi.org/10.3998/ark.5550190.p009.490

  27. Gu, Q. and Vessally, E., RSC Adv., 2020, vol. 10, p. 6756. https://doi.org/10.1039/D0RA00324G

    Article  Google Scholar 

  28. Timofeeva, D.S., Ofial, A.R., and Mayr, H., J. Am. Chem. Soc., 2018, vol. 140, p. 11474. https://doi.org/10.1021/jacs.8b07147

    Article  CAS  PubMed  Google Scholar 

  29. Zaikin, P.A., Dyan, Ok, Ton, Evtushok, D.V., Usoltsev, A.N., Borodkin, G.I., Karpova, E.V., and Shubin, V.G., Eur. J. Org. Chem., 2017, p. 2469. https://doi.org/10.1002/ejoc.201700179

Download references

ACKNOWLEDGMENTS

The authors express their gratitude to the Chemical Service Center for Collective Use, Siberian Branch, Russian Academy of Sciences (SB RAS), for measuring the NMR spectra (Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk).

Funding

The work was financially supported by the Russian Foundation for Basic Research (project no. 20-03-00700A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. Borodkin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated from Zhurnal Organicheskoi Khimii, 2023, Vol. 59, No. 11, pp. 1418–1426 https://doi.org/10.31857/S0514749223110034.

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borodkin, G.I., Elanov, I.R. & Shubin, V.G. Mechanochemical Fluorination of Naproxen and Its Salts with F–TEDA–BF4. Russ J Org Chem 59, 1858–1866 (2023). https://doi.org/10.1134/S1070428023110039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428023110039

Keywords:

Navigation