Skip to main content
Log in

Biologically Active Symmetric and Asymmetric Dicationic Bis(isatin hydrazones): What is Better―To Complicate or Simplify the Spacer?

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

The reaction of bisisatins containing a 1,ω-alkylene, -arylene, or -alkyluracil spacer with ammonium acetohydrazides gave a series of symmetric and asymmetric dicationic isatin-3-acylhydrazones. It was shown that the antimicrobial activity of the new compounds depends on the structure of the spacer and the nature of the substituent in the aromatic fragment. 5-Substituted isatin derivatives, where the heterocyclic fragments are linked by an 9- and 10-carbon alkylene chains, exhibit bactericidal effect against resistant strains of S. aureus at the level of Norfloxacin and the fungal pathogen P. cactorum, which causes plant late blight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Scheme
Scheme
Scheme
Scheme
Scheme
Fig. 2.
Fig. 3.
Scheme

REFERENCES

  1. Smith, M., Science, 2022, vol. 37, p. 820. https://doi.org/10.1126/science.abn8327

    Article  CAS  ADS  Google Scholar 

  2. Nudelman, A., Curr. Med. Chem., 2022, vol. 29, p. 2751. https://doi.org/10.2174/0929867328666210810124159

    Article  CAS  PubMed  Google Scholar 

  3. Menezes, J.C.J.M.D.S. and Diederich, M.F., Eur. J. Med. Chem., 2019, vol. 182, art. no. 111637. https://doi.org/10.1016/j.ejmech.2019.111637

  4. Iwaki, T., Oyama, Y., Tomoo, T., Tanaka, T., Okamura, Y., Sugiyama, M., Yamaki, A., and Furuya, M., Bioorg. Med. Chem., 2017, vol. 25, p. 1762. https://doi.org/10.1016/j.bmc.2017.01.026

    Article  CAS  PubMed  Google Scholar 

  5. Bancet, A., Raingeval, C., Lomberget, Th., Le Borgne, M., Guichou, J.-F., and Krimm, I., J. Med. Chem., 2020, vol. 63, p. 11420. https://doi.org/10.1021/acs.jmedchem.0c00242

    Article  CAS  PubMed  Google Scholar 

  6. Bedwell, E.V., McCarthy, W.J., Coyne, A.G., and Abell, Ch., Chem Biol. Drug Des., 2022, vol. 100, p. 469. https://doi.org/10.1111/cbdd.14120

    Article  CAS  PubMed  Google Scholar 

  7. Drapier, Th., Geubelle, P., Bouckaert, Ch., Nielsen, L., Laulumaa, S., Goffin, E., Dilly, S., Francotte, P., Hanson, Ju., Pochet, L., Kastrup, J.S., and Pirotte, B., J. Med. Chem., 2018, vol. 61, p. 5279. https://doi.org/10.1021/acs.jmedchem.8b00250

    Article  CAS  PubMed  Google Scholar 

  8. Paquin, A., Reyes-Moreno, C., and Berube, G., Molecules, 2021, vol. 26, art. no. 2340. https://doi.org/10.3390/molecules26082340

  9. Li, Sh., Shan, X., Wang, Yu., Chen, Q., Sun, J., He, Zh., Sun, B., and Luo, C., J. Control. Release, 2020, vol. 326, p. 510. https://doi.org/10.1016/j.jconrel.2020.07.036

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, Y.-Zh., Du, H.-Zh., Liu, H.-L., He, Q.-S., and Xu, Zh., Arch. Pharm. Chem. Life. Sci., 2020, vol. 353, art. no. e1900299. https://doi.org/10.1002/ardp.201900299

  11. Chauhan, G., Pathak, Dh.P., Ali, F., Bhutani, R., Kapoor, G., and Khasimbi, Sh., Curr. Org. Synth., 2020, vol. 17, p. 1. https://doi.org/10.2174/1570179417666200924150907

    Article  CAS  Google Scholar 

  12. Yakan, H., Cavus, M.S., Zengin, Kurt, B., Muglu, H., Sonmez, F., and Guzel, E., J. Mol. Struct., 2021, vol. 1239, art. no. 130495. https://doi.org/10.1016/j.molstruc.2021.130495

  13. Guo, H., Eur. J. Med. Chem., 2019, vol. 164, p. 678. https://doi.org/10.1016/j.ejmech.2018.12.017

    Article  CAS  PubMed  Google Scholar 

  14. Gao, F., Wang, T., Gao, M., Zhang, X., Liu, Zh., Zhao, Sh., Lv, Z., and Xiao, J., Eur. J. Med. Chem., 2019, vol. 165, p. 323. https://doi.org/10.1016/j.ejmech.2019.01.042

    Article  CAS  PubMed  Google Scholar 

  15. Ma, T., Chen, R., Xue, H., Miao, Zh., Chen, L., Zhang, H., and Shi, X., J. Heterocycl. Chem., 2020, vol. 57, p. 503. https://doi.org/10.1002/jhet.3781

    Article  CAS  Google Scholar 

  16. Chen, X., Zhu, H., Bao, K., Jiang, L., Zhu, H., Ying, M., He, Q., Yang, B., Sheng, R., and Cao, J., Acta Pharm. Sin., 2021, vol. 42, p. 1160. https://doi.org/10.1038/s41401-020-00600-5

    Article  CAS  Google Scholar 

  17. Althagafi, I.I., Abouzied, A.S., Farghly, T.A., Al-Qurashi, N.T., Alfaifi, M.Y., Shaaban, M.R., and Aziz, M.R.A., J. Heterocycl. Chem., 2019, vol. 56, p. 391. https://doi.org/10.1002/jhet.3410

    Article  CAS  Google Scholar 

  18. Xu, Y., Guan, J.G., Xu, Z., and Zhao, S.J., Fitoterapia, 2018, vol. 127, p. 383. https://doi.org/10.1016/j.fitote.2018.03.018

    Article  CAS  PubMed  Google Scholar 

  19. Hu, Y.-Q., Song, X.-F., and Fan, J., J. Heterocycl. Chem., 2018, vol. 55, p. 265. https://doi.org/10.1002/jhet.3042

    Article  CAS  Google Scholar 

  20. Singh, A., Nisha, T.B., Hahn, H.J., Liu, N., Tam, C., Cheng, L.W., Kim, J., Debnath, A., Land, K.M., and Kumar, V., Med. Chem. Commun., 2017, vol. 8, p. 1982. https://doi.org/10.1039/C7MD00434F

    Article  CAS  Google Scholar 

  21. Guo, H. and Diao, Q.-P., Curr. Top. Med. Chem., 2020, vol. 20, p. 1499. https://doi.org/10.2174/1568026620666200310124416

    Article  CAS  PubMed  Google Scholar 

  22. Cheng, R., Yan, X., and Xu, Z., J. Heterocycl. Chem., 2019, vol. 56, p. 2970. https://doi.org/10.1002/jhet.3689

    Article  CAS  Google Scholar 

  23. Wang, R., Yin, X., Zhang, Y., Zhang, T., and Shi, W., J. Heterocycl. Chem., 2018, vol. 55, p. 3001. https://doi.org/10.1002/jhet.3341

    Article  CAS  ADS  Google Scholar 

  24. Fan, Y.L., Huang, Z.P., and Liu, M., J. Heterocycl. Chem., 2018, vol. 55, p. 2990. https://doi.org/10.1002/jhet.3330

    Article  CAS  Google Scholar 

  25. Singh, P., Sharma, P., Anand, A., Bedi, P.M.S., Kaur, T., Saxena, A.K., and Kumar, V., Eur. J. Med. Chem., 2012, vol. 55, p. 455. https://doi.org/10.1016/j.ejmech.2012.06.057

    Article  CAS  PubMed  Google Scholar 

  26. Kumar, K., Sagar, S., Esau, L., Kaur, M., and Kumar, V., Eur. J. Med. Chem., 2012, vol. 58, p. 153. https://doi.org/10.1016/j.ejmech.2012.10.008

    Article  CAS  PubMed  Google Scholar 

  27. Wang, R., Yin, X., Zhang, Y., and Yan, W., Eur. J. Med. Chem., 2018, vol. 156, p. 580. https://doi.org/10.1016/j.ejmech.2018.07.025

    Article  CAS  PubMed  ADS  Google Scholar 

  28. Guo, H., J. Heterocycl. Chem., 2018, vol. 55, p. 1899. https://doi.org/10.1002/jhet.3226

    Article  CAS  ADS  Google Scholar 

  29. Wang, H.D., Fan, Y.L., Zhou, J., Xu, Y., and Guan, J.G., J. Heterocycl. Chem., 2018, vol. 55, p. 1991. https://doi.org/10.1002/jhet.3227

    Article  CAS  Google Scholar 

  30. Kumar, K., Liu, N., Yang, D., Na, D., Thompson, J., Wrischnik, L.A., Land, K.M., and Kumar, V., Bioorg. Med. Chem., 2015, vol. 23, p. 5190. https://doi.org/10.1016/j.bmc.2015.04.075

    Article  CAS  PubMed  Google Scholar 

  31. Dan, W., Gao, J., Qi, X., Wang, J., and Dai, J., Eur. J. Med. Chem., 2022, vol. 243, art. no. 114765. https://doi.org/10.1016/j.ejmech.2022.114765

  32. Vereshchagin, A.N., Frolov, N.A., Egorova, K.S., Seitkalieva, M.M., and Ananikov, V.P., Int. J. Mol. Sci., 2021, vol. 22, art. no. 6793. https://doi.org/10.3390/ijms22136793

  33. Shamsuri, A.A. and Jamil, S.N.A.M., Appl. Sci., 2021, vol. 11, art. no. 3167. https://doi.org/10.3390/app11073167

  34. Osimitz, T.G. and Droege, W., Toxicol. Res. Appl., 2021, vol. 5, art. no. 239784732110490. https://doi.org/10.1177/23978473211049085

  35. Morrison, K.R., Allen, R.A., Minbiole, K.P.C., and Wuest, W.M., Tetrahedron Lett., 2019, vol. 60, art. no. 150935. https://doi.org/10.1016/j.tetlet.2019.07.026

  36. Bogdanov, A.V., Kadomtseva, M.E., Bukharov, S.V., Voloshina, A.D., and Mironov, V.F., Russ. J. Org. Chem., 2020, vol. 56, p. 555. https://doi.org/10.1134/S107042802003032X

    Article  CAS  Google Scholar 

  37. Pashirova, T.N., Bogdanov, A.V., Zaripova, I.F., Burilova, E.A., Vandyukov, A.E., Sapunova, A.S., Vandyukova, I.I., Voloshina, A.D., Mironov, V.F., and Zakharova, L.Ya., J. Mol. Liq., 2019, vol. 290, art. no. 111220. https://doi.org/10.1016/j.molliq.2019.111220

  38. Bogdanov, A.V., Zaripova, I.F., Voloshina, A.D., Sapunova, A.S., Kulik, N.V., Voronina, Ju.K., and Mironov, V.F., Chem. Biodivers., 2018, vol. 15, art. no. 1800088. https://doi.org/10.1002/cbdv.201800088

  39. Pashirova, T.N., Shaihutdinova, Z.M., Vandyukov, A.E., Voloshina, A.D., Samorodov, A.V., Pavlov, V.N., Souto, E.B., Mironov, V.F., and Bogdanov, A.V., J. Mol. Liq., 2022, vol. 365, art. no. 120217. https://doi.org/10.1016/j.molliq.2022.120217

  40. Bogdanov, A.V., Voloshina, A.D., Lyubina, A.P., Amerkhanova, S.K., Kalinina, T.A., Glukhareva, T.V., and Mironov, V.F., Russ. J. Org. Chem., 2022, vol. 58, p. 777. https://doi.org/10.1134/S1070428022080012

    Article  Google Scholar 

  41. Bogdanov, A.V., Sirazieva, A.R., Voloshina, A.D., Abzalilov, T.A., Samorodov, A.V., and Mironov, V.F., Russ. J. Org. Chem., 2022, vol. 58, p. 27. https://doi.org/10.1134/S1070428022030101

    Article  Google Scholar 

  42. Bogdanov, A., Tsivileva, O., Voloshina, A., Lyubina, A., Amerhanova, S., Burtceva, E., Bukharov, S., Samorodov, A., and Pavlov, V., ADMET DMPK, 2022, vol. 10, p. 163. https://doi.org/10.5599/admet.1179

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bogdanov, A.V., Voloshina, A.D., Sapunova, A.S., Kulik, N.V., Bukharov, S.V., Dobrynin, A.B., Voronina, Ju.K., Terekhova, N.V., Samorodov, A.V., Pavlov, V.N., and Mironov, V.F., Chem. Biodivers., 2022, vol. 19, art. no. e202100496. https://doi.org/10.1002/cbdv.202100496

  44. Bogdanov, A.V., Zaripova, I.F., Mustafina, L.K., Voloshina, A.D., Sapunova, A.S., Kulik, N.V., and Mironov, V.F., Russ. J. Gen. Chem., 2019, vol. 89, p. 1368. https://doi.org/10.1134/S107036321907003X

    Article  CAS  Google Scholar 

  45. Voloshina, A.D., Semenov, V.E., Strobykina, A.S., Kulik, N.V., Krylova, E.S., Zobov, V.V., and Reznik, V.S., Russ. J. Bioorg. Chem., 2017, vol. 43, p. 170. https://doi.org/10.1134/S1068162017020170

    Article  CAS  Google Scholar 

  46. Semenov, V.E., Voloshina, A.D., Kulik, N.V., Uraleva, S.Yu., Giniyatullin, R.Kh., Mikhailov, A.S., Akamsin, V.D., Efremov, Yu.Ya., and Reznik, V.S., Pharm. Chem. J., 2009, vol. 43, p. 448. https://doi.org/10.1007/s11094-009-0331-y

    Article  CAS  Google Scholar 

  47. Zobov, V.V., Aslyamova, A.A., Berezinskii, L.A., Reznik, V.S., Akamsin, V.D., Galyametdinova, I.V., Giniyatullin, R.H., Nafikova, A.A., and Latypov, Sh.K., Pharm. Chem. J., 2005, vol. 39, p. 239. https://doi.org/10.1007/s11094-005-0125-9

    Article  CAS  Google Scholar 

  48. Semenov, V.E., Zueva, I.V., Mukhamedyarov, M.A., Lushchekina, S.V., Petukhova, E.O., Gubaidullina, L.M., Krylova, E.S., Saifina, L.F., Lenina, O.A., and Petrov, K.A., Molecules, 2020, vol. 25, art. no. 4191. https://doi.org/10.3390/molecules25184191

  49. Naclerio, G.A. and Sintim, H.O., Future Med. Chem., 2020, p. 12. https://doi.org/10.4155/fmc-2020-0046

  50. Fisher, J.F. and Mobashery, Sh., Protein Science, 2020, vol. 29, p. 629. https://doi.org/10.1002/pro.3737

    Article  CAS  PubMed  Google Scholar 

  51. Bush, K., Ann. N.Y. Acad. Sci., 2013, vol. v–vii, art. no. 1277. https://doi.org/10.1111/nyas.12025

  52. Zhou, J., Cai, Y., Liu, Y., An, H., Deng, K., Awais Ashraf, M., Zou, L., and Wang, Ju., Front. Microbiol., 2022, vol. 13, art. no. 952633. https://doi.org/10.3389/fmicb.2022.952633

  53. Epand, R.M., Walker, Ch., Epand, R.F., and Magarvey, N.A., Biochim. Biophys. Acta, 2016, vol. 1858, p. 980. https://doi.org/10.1016/j.bbamem.2015.10.018

    Article  CAS  PubMed  Google Scholar 

  54. Van Hamme, J.D., Singh, A., and Ward, O.P., Biotechnol. Adv., 2006, vol. 24, p. 604. https://doi.org/10.1016/j.biotechadv.2006.08.001

    Article  CAS  PubMed  Google Scholar 

  55. Desbois, A.P. and Smith, V.J., Appl. Microbiol. Biotechnol., 2009, vol. 85, p. 1629. https://doi.org/10.1007/s00253-009-2355-3

    Article  CAS  PubMed  Google Scholar 

  56. Ayoup, M.S., Wahby, Ya., Abdel-Hamid, H., Ramadan, E.S., Teleb, M., Abu-Serie, M.M., and Noby, A., Eur. J. Med. Chem., 2019, vol. 168, p. 340. https://doi.org/10.1016/j.ejmech.2019.02.051

    Article  CAS  Google Scholar 

  57. Abd-El-Khair, H., Abdel-Gaied, T.G., Mikhail, M.S., Abdel-Alim, A.I., and El-Nasr, H.I.S., Bull. Nat. Res. Centre, 2021, vol. 45, art. no. 37. https://doi.org/10.1186/s42269-021-00491-4

  58. Huang, X., Ren, J., Li, P., Feng, S., Dong, P., and Ren, M., J. Sci. Food Agric., 2021, vol. 101, p. 1744. https://doi.org/10.1002/jsfa.10829

    Article  CAS  PubMed  Google Scholar 

  59. Ragasova, L., Penazova, E., Gazdik, F., Pecenka, J., Cechova, J., Pokluda, R., Baranek, M., Grzebelus, D., and Eichmeier, A., Agronomy, 2020, vol. 10, art. no. 443. https://doi.org/10.3390/agronomy10030443

  60. Ray, M., Ray, A., Dash, S., Mishra, A., Achary, K.G., Nayak, S., and Singh, S., Biosensors Bioelectronics, 2017, vol. 87, p. 708. https://doi.org/10.1016/j.bios.2016.09.032

    Article  CAS  PubMed  Google Scholar 

  61. Wang, T., Gao, C., Cheng, Y., Li, Z., Chen, J., Guo, L., and Xu, J., Plants, 2020, vol. 9, art. no. 769. https://doi.org/10.3390/plants9060769

  62. Mastanjevic, K., Krstanovic, V., Mastanjevic, K., and Sarkanj, B., Fermentation, 2018, vol. 4, art. no. 3. https://doi.org/10.3390/fermentation4010003

  63. Han, J.-H., Park, G.-C., and Kim, K.S., Mycobiology, 2017, vol. 45, p. 370. https://doi.org/10.5941/MYCO.2017.45.4.370

    Article  PubMed  PubMed Central  Google Scholar 

  64. Chudinova, E.M., Platonov, V.A., Alexandrova, A.V., and Elansky, S.N., Plant Protection News, 2020, vol. 103, p. 192. https://doi.org/10.31993/2308-6459-2020-103-3-13431

    Article  Google Scholar 

  65. Monteiro, A., Cardoso, J., Guerra, N., Ribeiro, E., Viegas, C., Cabo Verde, S., and Sousa-Uva, A., Appl. Sci., 2022, vol. 12, art. no. 1958. https://doi.org/10.3390/app12041958

  66. Lim, B., Cheng, Y., Kato, T., Pham, A.T., Le Du, E., Mishra, A.K., Grinhagena, E., Moreau, D., Sakai, N., Waser, J., and Matile, S., Helv. Chim. Acta, 2021, vol. 104, art. no. e2100085. https://doi.org/10.1002/hlca.202100085

  67. Beluzan, F., Miarnau, X., Torguet, L., Armengol, J., and Abad-Campos, P., Agriculture, 2022, vol. 12, art. no. 294. https://doi.org/10.3390/agriculture12020294

  68. Dron, N., Simpfendorfer, S., Sutton, T., Pengilley, G., and Hobson, K., Agronomy, 2022, vol. 12, art. no. 89. https://doi.org/10.3390/agronomy12010089

  69. Bogdanov, A.V., Zaripova, I.F., Voloshina, A.D., Sapunova, A.S., Kulik, N.V., Tsivunina, I.V., Dobrynin, A.B., and Mironov, V.F., J. Fluor. Chem., 2019, vol. 227, art. no. 109345. https://doi.org/10.1016/j.jfluchem.2019.109345

  70. Bashkar, M., Bavadi, M., Ghaderi, E., and Niknam, Kh., Mol. Divers., 2021, vol. 25, p. 2001. https://doi.org/10.1007/s11030-020-10091-5

    Article  CAS  PubMed  Google Scholar 

  71. Mesropyan, E.G., Ambartsumyan, G.B., Avetisyan, A.A., Sarkisyan, M.G., and Amazaspyan, G.S., Russ. J. Org. Chem., 2001, vol. 37, p. 1476. https://doi.org/10.1023/A:1013412330472

    Article  CAS  Google Scholar 

  72. Reznik, V.S., Salikhov, I.Sh., Shvetsov, Yu.S., and Ivanov, B.E., Izv. Akad. Nauk SSSR, Ser. Khim., 1980, vol. 11, p. 2568.

    Google Scholar 

  73. National Committee for Clinical Laboratory Standards, Methods for Dilution Antimicrobial Susceptibility. Tests for Bacteria that Grow Aerobically, 6th, Edn., approved standard M7-A5, NCCLS, Wayne, 2000.

  74. Pane, C., Caputo, M., Francese, G., Manganiello, G., Lo Scalzo, R., Mennella, G., and Zaccardelli, M., Biology, 2020, vol. 9, art. no. 270. https://doi.org/10.3390/biology9090270

  75. Moreno-Gavira, A., Dianez, F., Sanchez-Montesinos, B., and Santos, M., J. Fungi, 2021, vol. 7, art. no. 415. https://doi.org/10.3390/jof7060415

Download references

ACKNOWLEDGMENTS

The authors express their gratitude to the Center for Collective Use and Control, Kazan Research Center, Russian Academy of Sciences, for technical support of the research. The study was carried out within the framework of the state assignment for of the Kazan Research Center, Russian Academy of Sciences. The antiphytopathogenic activity testing (O.M. Tsivileva) was carried out within the framework of the state assignment for the Saratov Research Center, Russian Academy of Sciences, from the Ministry of Education and Science of the Russian Federation (topic no. 121031100266-3).

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Bogdanov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated from Zhurnal Organicheskoi Khimii, 2023, Vol. 59, No. 11, pp. 1387–1409 https://doi.org/10.31857/S0514749223110010.

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogdanov, A.V., Voloshina, A.D., Amerkhanova, S.K. et al. Biologically Active Symmetric and Asymmetric Dicationic Bis(isatin hydrazones): What is Better―To Complicate or Simplify the Spacer?. Russ J Org Chem 59, 1831–1850 (2023). https://doi.org/10.1134/S1070428023110015

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428023110015

Keywords:

Navigation