Skip to main content
Log in

Synthesis of Pregnane–Cholesterol and Cholesterol–Cholesterol Prodrugs via Ring A–Ring A Connection. Potential Cytotoxic Activity against Cervical Cancer Cell Line HeLa

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

Two novel pregnane–cholesterol and cholesterol–cholesterol prodrugs have been synthesized. The synthetic route involved preparation of 2-(cholest-5-en-3-yloxycarbonyl)benzoic acid (2) by the esterification of cholesterol (1) with phthalic anhydride. The pregnane–cholesterol prodrug (4) was synthesized by treating 2-(cholest-5-en-3-yloxycarbonyl)benzoic acid (2) with 3β-hydroxypregna-5,16-dien-20-one (3), and cholesterol–cholesterol prodrug (5) was synthesized by treating acid 2 with cholesterol. The synthesized compounds have been characterized with the help of spectroscopic techniques like 1H and 13C NMR, FT-IR, UV-visible spectroscopy, and mass spectrometry. The prodrugs have shown potential cytotoxic effect in cervical cancer cell line HeLa. Compounds 2 and 4 were found to be effective prodrugs, the latter being the most effective. It showed less than 10% cell viability at 1 µM concentration, which signifies that these prodrugs may help to reduce cancer burden in human populations. Quantum chemical calculations of compounds 25 were performed in the ground state using the DFT of B3LYP level with 6-31G(d,p) basis set. The electronic properties such as HOMO and LUMO energies were determined by the time-dependent DFT approach. Intramolecular interactions have been identified by the AIM (Atoms in Molecules) approach. The reactivity and reactive sites within the synthesized prodrugs were examined with reactivity descriptors (global and local). The calculated dipole moments, polarizabilities, and first static hyperpolarizabilities indicated that the synthesized compounds might behave as good nonlinear optical materials. The probable reaction paths of prodrugs were calculated with molecular electrostatic potential (MEP) surface analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Brossard, D., Kihel, L.E., Clement, M., Sebbahi, W., Khalid, M., Roussakis, C., and Rault, S., Eur. J. Med. Chem., 2010, vol. 45, p. 2912. https://doi.org/10.1016/j.ejmech.2010.03.016

    Article  CAS  PubMed  Google Scholar 

  2. Radwan, A.A. and Alanaz, K.F., Saudi Pharm. J., 2014, vol. 22, p. 3. https://doi.org/10.1016/j.jsps.2013.01.003

    Article  PubMed  Google Scholar 

  3. Radwan, A.A. and Alanazi, F.K., Molecules, 2014, vol. 19, p. 13177. https://doi.org/10.3390/molecules190913177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brunel, J.M., Loncle, C., Vidal, N., Dherbomez, M., and Letourneux, Y., Steroids, 2005, vol. 70, p. 907. https://doi.org/10.1016/j.steroids.2005.06.007

    Article  CAS  PubMed  Google Scholar 

  5. Banday, M.R., Farshori, N.N., Ahmad, A., Khan, A.U., and Rauf, A., Eur. J. Med. Chem., 2010, vol. 45, p. 1459. https://doi.org/10.1016/j.ejmech.2009.12.052

    Article  CAS  PubMed  Google Scholar 

  6. Sethi, A. and Maurya, A., Bioorg. Med. Chem., 2007, vol. 15, p. 4520. https://doi.org/10.1016/j.bmc.2007.04.022

    Article  CAS  PubMed  Google Scholar 

  7. Nobile, A., Charney, A.W., Perlman, P.L., Herzog, H.L., Paynee, C.C., Tully, M.E., Jevnik, M.A., and Hersh­berg, E.B., J. Am. Chem. Soc., 1955, vol. 77, p. 4184. https://doi.org/10.1021/ja01620a079

    Article  CAS  Google Scholar 

  8. Shen, Y. and Burgoyne, D.L., J. Org. Chem., 2002, vol. 67, p. 3908. https://doi.org/10.1021/jo0108717

    Article  CAS  PubMed  Google Scholar 

  9. Sethi, A., Bhatia, G., Khanna, A.K., Khan, M.M., Bishnoi, A., Pandey, A.K., and Maurya, A., Med. Chem. Res., 2011, vol. 20, p. 36. https://doi.org/10.1007/s00044-009-9280-y

    Article  CAS  Google Scholar 

  10. Purushothaman, K.K., Sarada, A., and Saraswathi, A., Can. J. Chem., 1987, vol. 65, p. 150. https://doi.org/10.1139/v87-023

    Article  CAS  Google Scholar 

  11. Bader, R.F.W., Atoms in Molecules. A Quantum Theory, Oxford: Oxford Univ., 1990.

  12. Rozas, I. and Alkorta, I., J. Am. Chem. Soc., 2000, vol. 122, p. 11154. https://doi.org/10.1021/ja0017864

    Article  CAS  Google Scholar 

  13. Ebrahimi, A., Roohi, H., Habibi, M., Mohammadi, M., and Vaziri, R., Chem. Phys., 2006, vol. 322, p. 289. https://doi.org/10.1016/j.chemphys.2005.08.039

    Article  CAS  Google Scholar 

  14. Espinosa, E., Molins, E., and Lecomte, C., Chem. Phys. Lett., 1998, vol. 285, p. 170. https://doi.org/10.1016/S0009-2614(98)00036-0

    Article  CAS  Google Scholar 

  15. The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design, Matta, C.F. and Boyd, R.J., Eds., Weinheim: Wiley-VCH, 2007. https://doi.org/10.1002/9783527610709

  16. Sethi, A., Singh, R.P., Shukla, D., and Singh, P., J. Mol. Struct., 2016, vol. 1125, p. 616. https://doi.org/10.1016/j.molstruc.2016.07.020

    Article  CAS  Google Scholar 

  17. Nakano, M., Fujita, H., Takahata, M., and Yama­guchi, K., J. Am. Chem. Soc., 2002, vol. 124, p. 9648. https://doi.org/10.1021/ja0115969

    Article  CAS  PubMed  Google Scholar 

  18. Singh, R.P., Sharma, S., Kant, R., Amandeep, Singh, P., and Sethi, A., J. Mol. Struct., 2016, vol. 1105, p. 423. https://doi.org/10.1016/j.molstruc.2015.10.015

    Article  CAS  Google Scholar 

  19. Kleinmann, D.A., Phys. Rev., 1962, vol. 126, p. 1977. https://doi.org/10.1103/PhysRev.126.1977

    Article  Google Scholar 

  20. Koopmans, T., Physica, 1934, vol. 1, p. 104. https://doi.org/10.1016/S0031-8914(34)90011-2

    Article  Google Scholar 

  21. Pearson, R.G., J. Am. Chem. Soc., 1985, vol. 107, p. 6801. https://doi.org/10.1021/ja00310a009

    Article  CAS  Google Scholar 

  22. Pearson, R.G., J. Org. Chem., 1989, vol. 54, p. 1423. https://doi.org/10.1021/jo00267a034

    Article  CAS  Google Scholar 

  23. Parr, R.G. and Pearson, R.G., J. Am. Chem. Soc., 1983, vol. 105, p. 7512. https://doi.org/10.1021/ja00364a005

    Article  CAS  Google Scholar 

  24. Greelings, P., Proft, F.W., and Langenaeker, W., Chem. Rev., 2003, vol. 103, p. 1793. https://doi.org/10.1021/cr990029p

    Article  CAS  Google Scholar 

  25. Singh, R.P., Kant, R., Singh, K., Sharma, S., and Sethi, A., J. Mol. Struct., 2015, vol. 1095, p. 125. https://doi.org/10.1016/j.molstruc.2015.04.018

    Article  CAS  Google Scholar 

  26. Yildirim, G., Zalaoglu, Y., Kirilmis, C., Koca, M., and Terzioglu, C., Spectrochim. Acta, Part A, 2011, vol. 81, p. 104. https://doi.org/10.1016/j.saa.2011.05.056

    Article  CAS  Google Scholar 

  27. Mossman, T., J. Immunol. Methods, 1983, vol. 65, p. 55. https://doi.org/10.1016/0022-1759(83)90303-4

    Article  Google Scholar 

  28. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scu­seria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Naka­tsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmay­lov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hase­gawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Koba­yashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Sal­vador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., Gaussian 09, Revision A.1, Wallingford CT: Gaussian, 2009.

  29. Lee, C., Yang, W., and Parr, R.G., Phys. Rev., 1988, vol. 37, p. 785. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  30. Sundaraganesan, N., Kavitha, E., Sebastian, S., Cornard, J.P., and Martel, M., Spectrochim. Acta, Part A, 2009, vol. 74, p. 788. https://doi.org/10.1016/j.saa.2009.08.019

    Article  CAS  Google Scholar 

  31. Gauss View 3.09, Ver. 2, Pittsburgh PA: Gaussian.

  32. Keith. T.A., AIMAll (Version 10.05.04, Professional) 2010.

Download references

Funding

This work was supported by UGC Postdoc Fellowship for women 2015-16 [F.15-1/2015-17/PDFWN-2015-17-UTT-36157(SA-II)].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. Yadav or S. Srivastava.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, P., Yadav, N., Sethi, A. et al. Synthesis of Pregnane–Cholesterol and Cholesterol–Cholesterol Prodrugs via Ring A–Ring A Connection. Potential Cytotoxic Activity against Cervical Cancer Cell Line HeLa. Russ J Org Chem 59, 1797–1806 (2023). https://doi.org/10.1134/S1070428023100159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428023100159

Keywords:

Navigation