Skip to main content
Log in

Design, Synthesis, and Computational Characterization of Interesting Schiff Base Scaffolds as Antibacterial, Antimycobacterial, and Antifungal Agents

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

A series of (E)-1-(3/4-{[(E)-(2-chloroquinolin-3-yl)methylidene]amino}phenyl)ethan-1-one oximes 3a3j have been designed and synthesized by the condensation of 2-chloroquinoline-3-carbaldehydes and (E)-1-(3/4-aminophenyl)ethan-1-one oximes using glacial acetic acid as a catalyst. The structures of the newly synthesized compounds were characterized by 1H and 13C NMR, FT-IR, and mass spectra. All compounds 3a3j were assessed for their drug likeness and ADMET properties using computational analysis. They showed optimal drug scores and negligible toxicities and satisfied Lipinskiʼs rule of five. Compounds 3f, 3h, and 3i exhibited significant antimicrobial activity against Gram-positive (S. aureus, B. subtilis) and Gram-negative bacteria (S. Typhi, P. aeruginosa) and fungi (A. niger, A. flavus), whereas compounds 3g3j showed antimyco­bacterial activity against Mycobacterium tuberculosis H37Rv strain with MIC in the range of 1.6 to 100 µg/mL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Scheme
Fig. 2.

REFERENCES

  1. Uppar, V., Chandrashekharappa, S., Basarikatti, A.I., Banuprakash, G., Mohan, M.K., Chougala, M., Mudna­kudu-Nagaraju, K.K., Ningegowda, R.B., and Padma­shali, B., J. Appl. Pharm. Sci., 2020, vol. 10, p. 077. https://doi.org/10.7324/JAPS.2020.102013

    Article  CAS  Google Scholar 

  2. Uppar, V., Chandrashekharappa, S., Venugopala, K.N., Gleiser, R.M., Garcia, D., Odhav, B., Mohan, M.K., Deb, P.K., Venugopala, R., and Padmashali, B., Struct. Chem., 2020, vol. 31, p. 1533. https://doi.org/10.1007/s11224-020-01516-w

    Article  CAS  Google Scholar 

  3. Uppar, V., Mudnakudu-Nagaraju, A.I., Basarikatti, M., Chougala, S., Chandrashekharappa, M.K., Mohan, K.K., Banuprakash, G., Venugopala, K.N., Ningegowda, R., and Padmashali, B., Chem. Data Collect., 2020, vol. 25, article ID 100316. https://doi.org/10.1016/j.cdc.2019.100316

  4. Michael, J.P., Nat. Prod. Rep., 2004, vol. 21, p. 650. https://doi.org/10.1039/B310691H

    Article  CAS  PubMed  Google Scholar 

  5. Michael, J.P., Nat. Prod. Rep., 2003, vol. 20, p. 476. https://doi.org/10.1039/B208140G

    Article  CAS  PubMed  Google Scholar 

  6. Alhaider, A.A., Abdelkader, M.A., and Lien, E.J., J. Med. Chem., 1985, vol. 28, p. 1394. https://doi.org/10.1021/jm00148a004

    Article  CAS  PubMed  Google Scholar 

  7. Campbell, S.F., Hardstone, J.D., and Palmer, M.J., J. Med. Chem., 1988, vol. 31, p. 1031. https://doi.org/10.1021/jm00400a025

    Article  CAS  PubMed  Google Scholar 

  8. Wu, D., Tetrahedron, 2003, vol. 59, p. 8649. https://doi.org/10.1016/S0040-4020(03)01203-1

    Article  CAS  Google Scholar 

  9. Shah, N.M., Patel, M.P., and Patel, R.G., Eur. J. Med. Chem., 2012, vol. 54, p. 239. https://doi.org/10.1016/j.ejmech.2012.05.004

    Article  CAS  PubMed  Google Scholar 

  10. Pokalwar, R.U., Hangarge, R.V., Maske, P.V., and Shingare, M.S., Arkivoc, 2006, vol. 2006, part (xi), p. 196. https://doi.org/10.3998/ark.5550190.0007.b20

    Article  Google Scholar 

  11. Charris, J.E., Lobo, G.M., Camacho, J., Ferrer, R., Barazarte, A., Dominguez, J.N., Gamboa, N., Rodri­gues, J.R., and Angel, J.E., Lett. Drug Des. Discovery, 2007, vol. 4, p. 49. https://doi.org/10.2174/157018007778992865

    Article  CAS  Google Scholar 

  12. Kaur, K., Jain, M., Reddy, R.P., and Jain, R., Eur. J. Med. Chem., 2010, vol. 45, p. 3245. https://doi.org/10.1016/j.ejmech.2010.04.011

    Article  CAS  PubMed  Google Scholar 

  13. Khidre, R.E., Abdel-Wahab, B.F., and Badria, F.A.R., Lett. Drug Des. Discovery, 2011, vol. 8, p. 640. https://doi.org/10.2174/157018011796235194

    Article  CAS  Google Scholar 

  14. Chen, Y.-L., Chen, I-L., Lu, C.-M., Tzeng, C.-C., Tsao, L.-T., and Wang, J.-P., Bioorg. Med. Chem., 2004, vol. 12, p. 387. https://doi.org/10.1016/j.bmc.2003.10.051

    Article  CAS  PubMed  Google Scholar 

  15. Bawa, S. and Kumar, S., Indian J. Chem., Sect. B, 2009, vol. 48, p. 142. http://nopr.niscpr.res.in/handle/123456789/2938

    Google Scholar 

  16. Abdel-Wahab, B.F. and Khidre, R.E., J. Chem., 2013, vol. 2013, article ID 851297. https://doi.org/10.1155/2013/851297

  17. Abdou, W.M., Khidre, R.E., and Kamel, A.A., Arch. Pharm., 2012, vol. 345, p. 123. https://doi.org/10.1002/ardp.201100080

    Article  CAS  Google Scholar 

  18. Belmont, P.O., Meijer, L., Cohen, P., Patin, A., Bosson, J., and Goekjian, P.G., PCT Int. Appl. WO 2009090623, 2009.

  19. Kouznetsov, V.V., Méndez, L.Y.N., Leal, S.M., Cruz, U.M., Coronado, C.A., Gómez, C.M., Bohór­quez, A.R.R., and Rivero, P.E., Lett. Drug Des. Discovery, 2007, vol. 4, p. 293. https://doi.org/10.2174/157018007784620031

    Article  CAS  Google Scholar 

  20. Schumann, E.L., US Patent 3329677, 1967; Chem. Abstr., 1968, vol. 68, no. 87193.

  21. Al-Omar, M.A. and Amr, A.El-G., Molecules, 2010, vol. 15, p. 4711. https://doi.org/10.3390/molecules15074711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen, A.-S., Taguchi, T., Aoyama, S., Sugiura, M., Haruna, M., Wang, M.-W., and Miwa, I., Free Radicals Biol. Med., 2003, vol. 35, p. 1392. https://doi.org/10.1016/j.freeradbiomed.2003.08.014

    Article  CAS  Google Scholar 

  23. Sinha, D., Tiwari, A.K., Singh, S., Shukla, G., Mishra, P., Chandra, H., and Mishra, A.K., Eur. J. Med. Chem., 2008, vol. 43, p. 160. https://doi.org/10.1016/j.ejmech.2007.03.022

    Article  CAS  PubMed  Google Scholar 

  24. Bhandari, S.V., Bothara, K.G., Raut, M.K., Patil, A.A., Sarkate, A.P., and Mokale, V.J., Bioorg. Med. Chem., 2008, vol. 16, p. 1822. https://doi.org/10.1016/j.bmc.2007.11.014

    Article  CAS  PubMed  Google Scholar 

  25. Dewangan, D., Pandey, A., Sivakumar, T., Rajavel, R., and Dubey, R.D., Int. J. ChemTech Res., 2010 vol. 2, p. 1397.

    CAS  Google Scholar 

  26. Starčević, K., Kralj, M., Piantanida, I., Šuman, L., Pavelić, K., and Karminski-Zamola, G., Eur. J. Med. Chem., 2006, vol. 41, p. 925. https://doi.org/10.1016/j.ejmech.2006.03.012

    Article  CAS  PubMed  Google Scholar 

  27. Li, L., Chang, L, Pellet-Rostaing, S., Liger, F., Lemaire, M., Buchet, R., and Wu, Y., Bioorg. Med. Chem., 2009, vol. 17, p. 7290. https://doi.org/10.1016/j.bmc.2009.08.048

    Article  CAS  PubMed  Google Scholar 

  28. Bawa, R.A. and Sawalem, M.A., Int. J. Acad. Res., 2018, p. 346. https://www.researchgate.net/publication/328052674

  29. Katagi, M.S., Fernandes, J., Mamledesai, S., Sujatha, M.L., Rekha, A., and Bolakatti, G., INNOSC Theranostics Pharmacol. Sci., 2019, vol. 2, p. 14. https://doi.org/10.26689/itps.v2i1.499

    Article  Google Scholar 

  30. Vessally, E., Saeidian, H., Hosseinian, A., Edjlali, L., and Bekhradnia, A., Curr. Org. Chem., 2017, vol. 21, p. 249. https://doi.org/10.2174/1385272820666161018150925

    Article  CAS  Google Scholar 

  31. Nandeshwarappa, B.P., Chandrashekharappa, S., Prakash, G.K., and Prasannakumar, J.K., Chem. Data Collect., 2020, vol. 28, article ID 100446. https://doi.org/10.1016/j.cdc.2020.100446

  32. Nandeshwarappa, B.P., Chandrashekharappa, S., and Sadashiv, S.O., Chem. Data Collect., 2020, vol. 28, article ID 100484. https://doi.org/10.1016/j.cdc.2020.100484

  33. Nandeshwarappa, B.P., Chandrashekharappa. S., and Sadashiv, S.O., Chem. Data Collect., 2020, vol. 28, article ID 100466. https://doi.org/10.1016/j.cdc.2020.100466

  34. Nandeshwarappa, B.P., Prakash, G.K., and Sada­shiv, S.O., Heterocycles – Synthesis and Biological Activities, Nandeshwarappa, B.P. and Sadashiv, S.O., Eds., IntechOpen, 2020, chap. 1. https://doi.org/10.5772/intechopen.92030

  35. Praveen Kumar, C.H., Katagi, M.S., and Nandeshwa­rappa, B.P., Chem. Data Collect., 2022, vol. 42, article ID 100955. https://doi.org/10.1016/j.cdc.2022.100955

  36. Neloofar, N., Ali, N., Khan, A., Amir, S., Khan, N.A., and Bilal, M., Bull. Chem. Soc. Ethiop, 2017, vol. 31, p. 445. https://doi.org/10.4314/bcse.v31i3.8

    Article  CAS  Google Scholar 

  37. Ünlüer, D., Bektaş, E., and Ünver, Y., Turk. J. Anal. Chem., 2019, vol. 1, p. 18. https://dergipark.org.tr/en/pub/turkjac/issue/50574/

    Google Scholar 

  38. Bingöl, M. and Turan, N., J. Mol. Struct., 2020, vol. 1205, article ID 127542. https://doi.org/10.1016/j.molstruc.2019.127542

  39. Meth-Kohn, O., Narine, B., and Tarnowski, B., J. Chem. Soc., Perkin Trans. 1, 1981, p. 1520. https://doi.org/10.1039/P19810001520

  40. Daina, A., Michielin, O., and Zoete, V., Sci. Rep., 2017, vol. 7, article no. 42717. https://doi.org/10.1038/srep42717

  41. Broccatelli, F., Aliagas, I., and Zheng, H., ACS Med. Chem. Lett., 2018, vol. 9, no. 6, p. 522. https://doi.org/10.1021/acsmedchemlett.8b00047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ertl P, and Schuffenhauer, A., J. Cheminf., 2009, vol. 1, article no. 8. https://doi.org/10.1186/1758-2946-1-8

  43. Martin, Y.C., J. Med. Chem, 2005., vol. 48, no. 9, p. 3164. https://doi.org/10.1021/jm0492002

    Article  CAS  PubMed  Google Scholar 

  44. Fernandes, J. and Gattass, C.R., J. Med. Chem., 2009, vol. 52, no. 4, p. 1214. https://doi.org/10.1021/jm801389m

    Article  CAS  PubMed  Google Scholar 

  45. Dong J, Wang, N.N., Yao, Z.J., Zhang, L., Cheng, Y., Ouyang, D., Lu, A.P., and Cao, D.S., J. Cheminf., 2018, vol. 10, article no. 29. https://doi.org/10.1186/s13321-018-0283-x

  46. Trainor, G.L., Expert Opin. Drug Discovery, 2007, vol. 2, no. 1, p. 51. https://doi.org/10.1517/17460441.2.1.51

    Article  CAS  Google Scholar 

  47. Banerjee, P., Dunkel, M., Kemmler, E., and Preiss­ner, R., Nucleic Acids Res., 2020, vol. 48, no. W1, p. W580. https://doi.org/10.1093/nar/gkaa166

  48. Banerjee, P., Eckert, A.O., Schrey, A.K., and Preiss­ner, R., Nucleic Acids Res., 2018, vol. 46, no. W1, p. W257. https://doi.org/10.1093/nar/gky318

  49. Gadaleta, D., Vuković, K., Toma, C., Lavado, G.J., Karmaus, A.L., Mansouri, K., Kleinstreuer, N.C., Benfenati, E., and Roncaglioni, A., Vukovi, K., J. Cheminf., 2019, vol. 11, article no. 58. https://doi.org/10.1186/s13321-019-0383-2

  50. Mishra, A., Dixit, S., Ratan, V., Srivastava, M., Trivedi, S., and Srivastava, Y.K., Ann. Phytomed., 2018, vol. 7, no. 1, p. 78. https://doi.org/10.21276/ap.2018.7.1.9

    Article  CAS  Google Scholar 

  51. Daina, A., Michielin, O., and Zoete, V., Nucleic Acids Res., 2019, vol. 47, no. W1, p. W357. https://doi.org/10.1093/nar/gkz382

  52. Lourenço, M.C.S., de Souza, M.V.N., Pinheiro, A.C., Ferreira, M.L., Gonçalves, R.S.B., Nogueira, T.C.M., and Peralta, M.A., Arkivoc, 2007, vol. 2007, part (xv), p. 181. https://doi.org/10.3998/ark.5550190.0008.f18

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Davanagere University for encouraging research activities and also thankful to the NMR Instrument Centre, Mangalore University, Mangala­gangothri, Karnataka, for carrying out the spectral analysis.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. P. Nandeshwarappa.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maruthesh, H., Katagi, M.S., Samuel, J. et al. Design, Synthesis, and Computational Characterization of Interesting Schiff Base Scaffolds as Antibacterial, Antimycobacterial, and Antifungal Agents. Russ J Org Chem 59, 1783–1796 (2023). https://doi.org/10.1134/S1070428023100147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428023100147

Keywords:

Navigation