Skip to main content
Log in

Quinoline–Pyrimidine Monoazo Dye Hybrids: Synthesis, Catalyst Optimization, Molecular Docking and ADMET Studies, Biological Activity, and Dye Ability Assessment

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

In order to develop motifs with the potential applications as drugs and dyes, a series of novel quinoline–pyrimidine monoazo hybrids have been synthesized via the Biginelli reaction followed by diazo coupling. Molecular docking study of the synthesized compounds was performed against Topoisomerase IV from E. coli K-12 and CYP51 from C. albicans. The ADMET properties of the synthesized compounds were also investigated in order to understand the efficacy of drug candidates. The compounds bearing naphthol and orcinol substitutions showed excellent antifungal and antibacterial properties. The α-naphthol derivative displayed the highest binding affinity score (8.46 against Topoisomerase IV and 7.50 against CYP51) and an acceptable drug score (0.53) in toxicological and pharmacokinetics studies. The orcinol derivative showed a very good docking score but a low drug score in the ADMET study. Additionally, the dye ability of the synthesized compounds was assessed by dyeing cotton and silk fabrics. The compound containing a paracetamol moiety displayed excellent performance in terms of color and rubbing fastness and is promising for use in the textile industry for dyeing clothes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Navarro, A. and Sanz, F., Dyes. Pigm., 1999, vol. 40, p. 131. https://doi.org/10.1016/S0143-7208(98)00048-5

    Article  CAS  Google Scholar 

  2. Khan, M.N., Parmar, D.K., and Das, D., Mini-Rev. Med. Chem., 2021, vol. 21, p. 1071. https://doi.org/10.2174/1389557520999201123210025

    Article  CAS  PubMed  Google Scholar 

  3. Wainwright, M. and Kristiansen, J.E., Dyes Pigm., 2011, vol. 88, p. 231. https://doi.org/10.1016/j.dyepig.2010.08.012

    Article  CAS  Google Scholar 

  4. Salman, H.H., Abood, H.S., and Ramadhan, U.H., Orient. J. Chem., 2019, vol. 35, p. 870. https://doi.org/10.13005/ojc/350251

    Article  CAS  Google Scholar 

  5. Sabry, M.A. Ewida, H.A., Hassan, G.S., Ghaly, M.A., and El-Subbagh, H.I., Bioorg. Chem., 2019, vol. 88, article ID 102923. https://doi.org/10.1016/j.bioorg.2019.102923

  6. Tonelli, M., Boido, V., Canu, C., Sparatore, A., Spara­tore, F., Paneni, M.S., Fermeglia, M., Pricl, S., Colla, P.L., Casula, L., Ibba, C., Collu, D., and Loddo, R., Bioorg. Med. Chem., 2008, vol. 16, p. 8447. https://doi.org/10.1016/j.bmc.2008.08.028

    Article  CAS  PubMed  Google Scholar 

  7. Benjamin, I., Udoikono, A.D., Louis, H., Agwamba, E.C., Unimuke, T.O., Owen, A.E., and Adeyinka, A.S., J. Mol. Struct., 2022, vol. 1264, article ID 133298. https://doi.org/10.1016/j.molstruc.2022.133298

  8. Kantar, C., Akal, H., Kaya, B., Islamoğlu, F., Türk, M., and Şaşmaz, S., J. Organomet. Chem., 2015, vol. 783, p. 28. https://doi.org/10.1016/j.jorganchem.2014.12.042

    Article  CAS  Google Scholar 

  9. Benkhaya, S., M’rabet, S., and El Harfi, A., Heliyon, 2020, vol. 6, article ID e03271. https://doi.org/10.1016/j.heliyon.2020.e03271

  10. Vidya, V.G. and Sadasivan, V., Asian J. Chem., 2018, vol. 30, p. 2049. https://doi.org/10.14233/ajchem.2018.21414

    Article  CAS  Google Scholar 

  11. Trivedi, H.D., Joshi, V.B., and Patel, B.Y., Anal. Chem. Lett., 2022, vol. 12, p. 147. https://doi.org/10.1080/22297928.2021.1910565

    Article  CAS  Google Scholar 

  12. Luongo, G., Iadaresta, F., Moccia, E., Östman, C., and Crescenzi, C., J. Chromatogr. A, 2016, vol. 1471, p. 11. https://doi.org/10.1016/j.chroma.2016.09.068

    Article  CAS  PubMed  Google Scholar 

  13. Desai, N., Harsora, J., Patel, B., and Jadeja, K., Indian J. Chem., Sect. B, 2017, vol. 56, p. 976. http://nopr.niscpr.res.in/handle/123456789/42721

    Google Scholar 

  14. Desai, N.C., Patel, B.Y., and Dave, B.P., Med. Chem. Res., 2017, vol. 26, p. 109. https://doi.org/10.1007/s00044-016-1732-6

    Article  CAS  Google Scholar 

  15. Desai, N.C., Vaghani, H.V., Patel, B.Y., and Karkar, T.J., Indian J. Pharm. Sci., 2018, vol. 80, p. 242. https://doi.org/10.4172/pharmaceutical-ciences.1000351

    Article  CAS  Google Scholar 

  16. Desai, N.C., Patel, B.Y., Jadeja, K.A., and Dave, B.P., Novel Approaches Drug Des. Dev., 2017, vol. 1, p. 64. https://doi.org/10.19080/NAPDD.2017.01.555570

    Article  Google Scholar 

  17. Desai, N.C., Bhatt, N., Dodiya, A., Karkar, T., Patel, B., and Bhatt, M., Res. Chem. Intermed., 2016, vol. 42, p. 3039. https://doi.org/10.1007/s11164-015-2196-x

    Article  CAS  Google Scholar 

  18. Desai, N.C., Vaghani, H.V., Karkar, T.J., Patel, B.Y., and Jadeja, K.A., Indian J. Chem., Sect. B., 2017, vol. 56, p. 438. http://nopr.niscpr.res.in/handle/123456789/41188

    Google Scholar 

  19. Patel, B.Y., Karkar, T.J., and Bhatt, M.J., Eur. Chem. Bull., 2021, vol. 10, p. 13. https://doi.org/10.17628/ecb.2021.10.13-20

    Article  CAS  Google Scholar 

  20. Desai, N.C., Patel, B.Y., and Dave, B.P., Int. Lett. Chem., Phys. Astron., 2016, vol. 69, p. 87. https://doi.org/10.18052/www.scipress.com/ILCPA.69.87

    Article  Google Scholar 

  21. Shinde, S. and Sekar, N., Appl. New Technol., 2021, p. 61. https://doi.org/10.1515/9783110682045-004

  22. Meth-Cohn, O. and Taylor, D.L., Tetrahedron, 1995, vol. 51, p. 12869. https://doi.org/10.1016/0040-4020(95)00729-R

    Article  CAS  Google Scholar 

  23. Shah, P.J., Indian J. Chem., Sect. B, 2021, vol. 60, p. 1223. http://nopr.niscpr.res.in/handle/123456789/58197

    Google Scholar 

  24. Sagar, S.R., Agarwal, J.K., Pandya, D.H., Dash, R.P., Nivsarkar, M., and Vasu, K.K., Bioorg. Med. Chem. Lett., 2015, vol. 25, p. 4428. https://doi.org/10.1016/j.bmcl.2015.09.015

    Article  CAS  PubMed  Google Scholar 

  25. Shah, B.M., Sagar, S.R., and Trivedi, P., J. Biomol. Struct. Dyn., 2022, vol. 40, p. 13778. https://doi.org/10.1080/07391102.2021.1994876

    Article  CAS  PubMed  Google Scholar 

  26. Sybyl-X 2.0, Tripos International, A Ceratra Company, USA.

  27. Tari, L.W., Trzoss, M., Bensen, D.C., Li, X., Chen, Z., Lam, T., Zhang, J., Creighton, C.J., Cunningham, M.L., Kwan, B., Stidham, M., Shaw, K.J., Lightstone, F.C., Wong, S.E., Nguyen, T.B., Nix, J., and Finn, J., Bioorg. Med. Chem. Lett., 2013, vol. 23, p. 1529. https://doi.org/10.1016/j.bmcl.2012.11.032

    Article  CAS  PubMed  Google Scholar 

  28. Keniya, M.V., Sabherwal, M., Wilson, R.K., Woods, M.A., Sagatova, A.A., Tyndall, J.D., and Monk, B.C., Antimicrob. Agents Chemother., 2018, vol. 62, article ID e01134-18. https://doi.org/10.1128/AAC.01134-18

  29. Maestro 11.2 (2017), Glide, Schrödinger LLC, New York.

  30. Polkam, N., Ramaswamy, V.R., Rayam, P., Allaka, T.R., Anantaraju, H.S., Dharmarajan, S., Perumal, Y., Gandamalla, D., Yellu, N.R., Balasubramanian, S., and Anireddy, J.S., Bioorg. Med. Chem. Lett., 2016, vol. 26, p. 2562. https://doi.org/10.1016/j.bmcl.2016.03.024

    Article  CAS  PubMed  Google Scholar 

  31. Puratchikody, A., Sriram, D., Umamaheswari, A., and Irfan, N., Chem. Cent. J., 2016, vol. 10, p. 24. https://doi.org/10.1186/s13065-016-0169-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Trivedi, H.D., Patel, B.Y., Patel, P.K., and Sagar, S.R., Chem. Data Collect., 2022, vol. 41, article ID 100923. https://doi.org/10.1016/j.cdc.2022.100923

Download references

ACKNOWLEDGMENTS

The authors are thankful to Department of Chemistry and Department of Microbiology, C.U. Shah University, Surendranagar, and RK University, Rajkot, for providing the facilities for the research and to Department of Pharmaceutical Chemistry, L.J. Institute of Pharmacy, L.J. University, for providing the ADMET and docking data.

Funding

This work was supported and funded by SHODH Scholarship (202001260001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Y. Patel.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trivedi, H.D., Patel, B.Y., Patel, P.K. et al. Quinoline–Pyrimidine Monoazo Dye Hybrids: Synthesis, Catalyst Optimization, Molecular Docking and ADMET Studies, Biological Activity, and Dye Ability Assessment. Russ J Org Chem 59, 1769–1782 (2023). https://doi.org/10.1134/S1070428023100135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428023100135

Keywords:

Navigation