Skip to main content
Log in

Microwave-Assisted Synthesis of β-Cyanoketones under Bucherer–Bergs Conditions and Their Antimicrobial Evaluation and In Silico Studies

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

The microwave-assisted synthesis of β-cyanoketones from chalcones under Bucherer–Bergs reaction conditions was described. The structure of the synthesized compounds was elucidated by FTIR-ATR, 1H and 13C NMR, MS/CI, and elemental analyses. All compounds were evaluated for their in vitro antibacterial against three Gram-positive and four Gram-negative bacterial strains. Moreover, their in vitro toxicity was evaluated by the Artemia salina assay, and the most active antibacterial agents were analyzed in silico.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Fig. 1.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

REFERENCES

  1. Church, N.A. and McKillip, J.L., Biologia, 2021, vol. 76, p.1535. https://doi.org/10.1007/s11756-021-00697-x

    Article  CAS  Google Scholar 

  2. Egelkamp, R., Zimmermann, T., Schneider, D., Hertel, R., and Daniel, R., Front. Environ. Sci., 2019, vol. 7, p. 103. https://doi.org/10.3389/fenvs.2019.00103

    Article  Google Scholar 

  3. Wang, X., Wang, Y., Li, X., Yu, Z., Song, C., and Du, Y., RSC Med. Chem., 2021, vol. 12, p. 1650. https://doi.org/10.1039/D1MD00131K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tanaka, Y., Kanai, M., and Shibasaki, M., J. Am. Chem. Soc., 2008, vol. 2, p. 9911. https://doi.org/10.1021/ja801201r

    Article  CAS  Google Scholar 

  5. Nandi, S., Patel, P., Jakhar, A., Khan, N.H., Biradar, A.V., and Kureshy, R.I., ChemistrySelect, 2017, vol. 2, p. 9911. https://doi.org/10.1002/slct.201702196

    Article  CAS  Google Scholar 

  6. Hu, Z., Dong, J., Li, Z., Yuan, B., Wei, R., and Xu, X., Org. Lett., 2018, vol. 20, p. 6750. https://doi.org/10.1021/acs.orglett.8b02870

    Article  CAS  PubMed  Google Scholar 

  7. Jiang, D., Wang, Y.Y., Tu, M., and Dai, L.Y., React. Kinet. Catal. Lett., 2008, vol. 95, p. 265. https://doi.org/10.1007/s11144-008-5345-8

    Article  CAS  Google Scholar 

  8. Wu, L., Wang, L., Chen, P., Guo, Y.L., and Liu, G.J., Adv. Synth. Catal., 2020, vol. 362, p. 2189. https://doi.org/10.1002/adsc.202000202

    Article  Google Scholar 

  9. Winkler, C.K., Clay, D., Turrini, N.G., Lechner, H., Kroutil, W., and Davies, S., Adv. Synth. Catal., 2014, vol. 356, p. 1878. https://doi.org/10.1002/adsc.201301055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sammis, G.M. and Jacobsen, E.N., J. Am. Chem. Soc., 2003, vol. 125, p. 4442. https://doi.org/10.1021/ja034635k

    Article  CAS  PubMed  Google Scholar 

  11. Mita, T., Sasaki, K., Kanai, M., and Shibasaki, M., J. Am. Chem. Soc., 2005, vol. 127, p. 514. https://doi.org/10.1021/ja043424s

    Article  CAS  PubMed  Google Scholar 

  12. Ramesh, S. and Lalitha, A., Acta. Chim. Slov., 2013, vol. 60, p. 689.

    CAS  PubMed  Google Scholar 

  13. Dong, H.R., Dong, W.J., Li, R.S., Hu, Y.M., Dong, H.S., and Xie, Z.X., Green Chem., 2014, vol. 16, p. 3454. https://doi.org/10.1039/C4GC00386A

    Article  CAS  Google Scholar 

  14. Li, Z. and Yin, J., Chin. J. Chem., 2017, vol. 35, p. 1179. https://doi.org/10.1002/cjoc.201600860

    Article  CAS  Google Scholar 

  15. Li, Z.F., Li, Q., Ren, L.Q., Li, Q.H., Peng, Y.G., and Liu, T.L., Chem. Sci., 2019, vol. 10, p. 5787. https://doi.org/10.1039/C9SC00640K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ni, J., Cristòfol, À., and Kleij, A.W., Org. Chem. Front., 2021, vol. 8, p. 4520. https://doi.org/10.1039/D1QO00770J

    Article  CAS  Google Scholar 

  17. Iida, H., Moromizato, T., Hamana, H., and Matsu­moto, K., Tetrahedron Lett., 2007, vol. 48, p. 2037. https://doi.org/10.1016/j.tetlet.2006.12.145

    Article  CAS  Google Scholar 

  18. Yang, J. and Chen, F., Chin. J. Chem., 2010, vol. 28, p. 981. https://doi.org/10.1002/cjoc.201090182

    Article  CAS  Google Scholar 

  19. Strappaveccia, G., Angelini, T., Bianchi, L., Santoro, S., Piermatti, O., and Lanari, D., Adv. Synth. Catal., 2016, vol. 13, p. 2134. https://doi.org/10.1002/adsc.201600287

    Article  CAS  Google Scholar 

  20. Fleming, F.F., Yao, L., Ravikumar, P., Funk, L., and Shook, B.C., J. Med. Chem., 2010, vol. 53, p. 7902. https://doi.org/10.1021/jm100762r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Montes-Avila, J., Díaz-Camacho, S.P., Sicairos-Félix, J., Delgado-Vargas, F., and Rivero, I.A., Bioorg. Med. Chem., 2009, vol. 17, p. 6780. https://doi.org/10.1016/j.bmc.2009.02.052

    Article  CAS  PubMed  Google Scholar 

  22. Díaz-Carrillo, J.T., Díaz-Camacho, S.P., Delgado-Vargas, F., Rivero, I.A., López-Angulo, G., Sarmiento-Sánchez, J.I., and Montes-Avila, J., Braz. J. Pharm. Sci., 2018, vol. 54, article ID e17343. https://doi.org/10.1590/s217597902018000317343

  23. Srinivasan, B., Rodrigues, J.V., Tonddast-Navaei, S., Shakhnovich, E., and Skolnick, J., ACS Chem. Biol., 2017, vol. 12, p. 1848. https://doi.org/10.1021/acschembio.7b00175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Benmekhbi, L., Krid, A., Bencharif, L., and Ben­charif, M., Int. J. Appl. Phys. Bio-Chem. Res., 2014, vol. 4, p. 17.

    Google Scholar 

  25. Alrohily, W.D., Habib, M.E., El-Messery, S.M., Alqurshi, A., El-Subbagh, H., and Habib, E.S., Microb. Pathog., 2019, vol. 136, p. 103674. https://doi.org/10.1016/j.micpath.2019.103674

    Article  CAS  PubMed  Google Scholar 

  26. Wróbel, A., Maliszewski, D., Baradyn, M., and Droz­dowska, D., Molecules, 2019, vol. 25, article no. 116. https://doi.org/10.3390/molecules25010116

  27. Weinstein, M.P., National Committee for Clinical Laboratory Standards, Wayne: New Jersey, 2018.

  28. Nunes, B.S., Carvalho, F.D., Guilhermino, L.M., and Van-Stappen, G., Environ. Pollut., 2006, vol. 144, p. 453. https://doi.org/10.1016/j.envpol.2005.12.037

    Article  CAS  PubMed  Google Scholar 

  29. Abbott, W.S., J. Econ. Entomol.,1925, vol. 18, p. 265. https://doi.org/10.1093/jee/18.2.265a

  30. Kaur, G., Kaur, M., Sharad, L., and Bansal, M., J. Heterocycl. Chem., 2020, vol. 57, p. 225. https://doi.org/10.1002/jhet.3768

    Article  CAS  Google Scholar 

  31. Erol, M., Celik, I., Temiz-Arpaci, O., Goker, H., Kaynak-Onurdag, F., and Okten, S., Med. Chem. Res., 2020, vol. 29, p. 2028. https://doi.org/10.1007/s00044-020-02621-5

    Article  CAS  Google Scholar 

  32. Banerjee, P., Eckert, A.O., Schrey, A.K., and Preiss­ner, R., Nucleic Acids Res., 2018, vol. 46, p. W257. https://doi.org/10.1093/nar/gky318

  33. Egbujor, M.C., Okoro, U.C., and Okafor, S., Med. Chem. Res., 2019, vol. 28, p. 2118. https://doi.org/10.1007/s00044-019-02440-3

    Article  CAS  Google Scholar 

  34. Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., and Meng, E.C., J. Comput. Chem., 2004, vol. 25, p. 1605. https://doi.org/10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  35. Ko, J., Park, H., Heo, L., and Seok, C., Nucleic Acids Res., 2012, vol. 40, p. W294. https://doi.org/10.1093/nar/gks493

  36. Lomize, M.A., Pogozheva, I.D., Joo, H., Mosberg, H.I., and Lomize, A.L., Nucleic Acids Res., 2014, vol. 40, p. D370. https://doi.org/10.1093/nar/gkr703

  37. Rivero, I.A., Reynoso-Soto, E.A., and Ochoa-Terán, A., Arkivoc, 2011, vol. 2011, part (ii), p. 260. https://doi.org/10.3998/ark.5550190.0012.221

    Article  Google Scholar 

  38. Kalník, M., Gabko, P., Bella, M., and Koóš, M., Molecules, 2021, vol. 26, article no. 4024. https://doi.org/10.3390/molecules26134024

  39. Li, Z., Liu, C., Zhang, Y., Li, R., Ma, B., and Yang, J., Synlett, 2012, vol. 23, p. 2567. https://doi.org/10.1055/s-0032-1317179

    Article  CAS  Google Scholar 

  40. Bhat, A.R., Dongre, R.S., Almalki, F.A., Berredjem, M., Aissaoui, M., and Touzani, R., Bioorg. Chem., 2021, vol. 106, article ID 104480. https://doi.org/10.1016/j.bioorg.2020.104480

  41. Dongre, R.S., Meshram, J.S., Selokar, R.S., Almalki, F.A., and Hadda, T.B., New. J. Chem., 2018, vol. 42, p. 15610. https://doi.org/10.1039/C8NJ02081G

    Article  CAS  Google Scholar 

  42. de Jesús Uribe-Beltrán, M., Ahumada-Santos, Y.P., Díaz-Camacho, S.P., Eslava-Campos, C.A., Reyes-Valenzu­ela, J.E., and Báez-Flores, M.E., J. Med. Microbiol., 2017, vol. 66, p. 972. https://doi.org/10.1099/jmm.0.000548

    Article  CAS  Google Scholar 

  43. Lipinski, C.A., Adv. Drug Delivery Rev., 2016, vol. 101, p. 34. https://doi.org/10.1016/j.addr.2016.04.029

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

M.A. Leyva Acuña is grateful to Consejo Nacional de Ciencia y Tecnología (CONACYT) for the graduate studies scholarship. We would like to thank Dr. V.C. Osuna Galindo, Centro de Investigación en Materiales Avanzados, S.C. (Chihuahua, Mexico) for the elemental analyses.

Funding

This project was partially funded by the National Council of Science and Technology of Mexico (CONACYT) under Grant no. A1-S-24537 and “Programa de Fomento y Apoyo a Proyectos de Investigación” (PROFAPI) of the Autonomous University of Sinaloa under Grant no. PROFAPI2015/185.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Montes-Avila.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leyva-Acuña, M.A., Delgado-Vargas, F., Lopez-Angulo, G. et al. Microwave-Assisted Synthesis of β-Cyanoketones under Bucherer–Bergs Conditions and Their Antimicrobial Evaluation and In Silico Studies. Russ J Org Chem 59, 1598–1609 (2023). https://doi.org/10.1134/S107042802309018X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107042802309018X

Keywords:

Navigation