Skip to main content
Log in

Synthesis, Antibacterial Activity, and Molecular Docking Study of 3-Phenylquinazolin-4(3H)-one Derivatives

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

A novel economic DMSO-assisted methodology for synthesizing 3-phenylquinazolin-4(3H)-one derivatives from easily accessible 2-aminobenzoic acids and anilines in the presence of K2S2O8 as an additive and molecular iodine as a catalyst. In this reaction, DMSO acted as both solvent and one-carbon synthon. The compounds were characterized by 1H and 13C NMR, HRMS, LC/MS, and elemental analysis and were tested against several bacterial and fungal strains. 7-Chloro-3-phenylquinazolin-4(3H)-one showed significant antibac­terial activity against E. coli with IC50 and MIC values of 18.5±4.0 and 38 μg/mL, respectively, and 6-bromo-3-(2-fluorophenyl)quinazolin-4(3H)-one was active against S. aureus with IC50 and MIC values of 16.0±1.9 and 36 μg/mL, respectively. None of the compounds inhibited C. albicans. Molecular docking study was performed on 6-bromo-3-(3-methylphenyl)quinazolin-4(3H)-one against human carbonic anhydrase IX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Scheme
Scheme
Scheme
Fig. 2.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

REFERENCES

  1. He, D., Wang, M., Zhao, S., Shu, Y., Zeng, H., Xiao, C., Lu, C., and Liu, Y., Fitoterapia, 2017, vol. 119, p. 136. https://doi.org/10.1016/j.fitote.2017.05.001

    Article  CAS  PubMed  Google Scholar 

  2. Plescia, F., Maggio, B., Daidone, G., and Raffa, D., Eur J Med Chem., 2021, vol. 213, article ID 113070. https://doi.org/10.1016/j.ejmech.2020.113070

  3. Tiwary, B.K., Pradhan, K., Nanda, A.K., and Chakra­borty, R., J. Chem. Biol. Ther., 2015, vol. 1, p. 2572. https://doi.org/

    Google Scholar 

  4. Sharma, P.C., Kaur, G., Pahwa, R., Sharma, A., and Rajak, H., Curr. Med. Chem., 2011, vol. 18, p. 4786. https://doi.org/10.2174/092986711797535326

    Article  CAS  PubMed  Google Scholar 

  5. Sayed, S., Metwally, K., Shanawani, A.A., Abdel, L.M., Pratsinis, H., and Kletsas, D., Chem. Cent. J., 2017, vol. 11, p. 102. https://doi.org/10.1186/s13065-017-0333-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Birhan, Y.S., Bekhit, A., and Hymete, A., Org. Med. Chem. Lett., 2014, vol. 4, article no. 10. https://doi.org/10.1186/s13588-014-0010-1

  7. Chaitanya, P., Reddy, G.D., Varun, G., Srikanth, L.M., Prasad, V.S.S.R., and Ravindernath, A., Med. Chem., 2014, vol. 10, p. 711. https://doi.org/10.2174/1573406409666131128142843

    Article  CAS  PubMed  Google Scholar 

  8. Devi, K. and Kachroo, M., Pharma Chem., 2014, vol. 6, p. 353.

    CAS  Google Scholar 

  9. Wang, Z., Wang, M., Yao, X., Li, Y., Tan, T., Wang, L., Qiao, W., Geng, Y., Liu, Y., and Wang, Q., Eur. J. Med. Chem., 2012, vol. 53, p. 282. https://doi.org/10.1016/j.ejmech.2012.04.010

    Article  CAS  Google Scholar 

  10. Patel, J.A., Mistry, B.D., and Desai, K.R.., E-J. Chem., 2006, vol. 3, article ID 586512. https://doi.org/10.1155/2006/586512

  11. Birhan, Y.S., Bekhit, A.A., and Hymete, A., BMC Res. Notes, 2015, vol. 8, article no. 589. https://doi.org/10.1186/s13104-015-1578-x

  12. Patel, H.M., Noolvi, M.N., Shirkhedkar, A.A., Kulkarni, A.D., Pardeshi, C.V., and Surana, B.S.J., RSC Adv., 2016, vol. 6, p. 44455. https://doi.org/10.1039/C6RA01284A

    Article  CAS  Google Scholar 

  13. Shivanand, M.K. and Holla, B.S., J. Chem. Pharm. Res., 2011, vol. 3, p. 86.

    Google Scholar 

  14. Patel, H.M., Pawara, R., Ansari, A., Noolvi, M., and Surana, S., Bioorg. Med. Chem., 2017, vol. 25, p. 2713. https://doi.org/10.1016/j.bmc.2017.03.039

    Article  CAS  PubMed  Google Scholar 

  15. Zhan, X., Xu, Y., Qi, Q., Wang, Y., Shi, H., and Mao, Z., Chem. Biodiversity, 2018, vol. 15, p. 79. https://doi.org/10.1002/cbdv.201700513

    Article  CAS  Google Scholar 

  16. Wolfe, J.F., Rathman, T.L., Sleevi, M.C., Campbell, J.A., and Greenwood, T.D., J. Med. Chem., 1990, vol. 33, p. 161. https://doi.org/10.1021/jm00163a027

    Article  CAS  PubMed  Google Scholar 

  17. Ochiai, T. and Ishida, R., Jpn. J. Pharmacol., 1982, vol. 32, p. 427. https://doi.org/10.1254/jjp.32.427

    Article  CAS  PubMed  Google Scholar 

  18. Xing, Z., Wu, W., Miao, Y., Tang, Y., Zhou, Y., Zheng, L., Fu, Y., Song, Z., and Peng, Y., Org. Chem. Front., 2021, vol. 8, p. 1867. https://doi.org/10.1039/D0QO01425G

    Article  CAS  Google Scholar 

  19. Guillon, R., Pagniez, F., Picot, C., Hedou, D., Tonnerre, A., Chosson, E., Duflos, M., Besson, T., Loge, C., and Pape, P.L., ACS Med. Chem. Lett., 2013, vol. 4, p. 292. https://doi.org/10.1021/ml300429p

    Article  CAS  Google Scholar 

  20. Noureldin, N.A., Kothayer, H., Lashine, E.S.M., Baraka, M.M., Eraky, W.E., and Awdan, S.A.E., Arch. Pharm., 2017, vol. 23, p. 536. https://doi.org/10.1002/ardp.201600332

    Article  CAS  Google Scholar 

  21. Zhu, S., Zhang, Q., Gudise, C., Wei, L., Smith, E., and Zeng, Y., Bioorg Med Chem., 2009, vol. 17, p. 4496. https://doi.org/10.1016/j.bmc.2009.05.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhao, P., Yu, X.X., Zhou, Y., Geng, Y., Wang, C., Huang, C., Wu, Y.D., Zhu, Y.P., and Wu, A.X., Org. Lett., 2020, vol. 22, p. 7103. https://doi.org/10.1021/acs.orglett.0c02415

    Article  CAS  PubMed  Google Scholar 

  23. Kirinde Arachchige, P.T. and Yi, C.S., Org Lett., 2019, vol. 21, p. 3337. https://doi.org/10.1021/acs.orglett.9b01082

    Article  CAS  PubMed  Google Scholar 

  24. Liang, Y., Tan, Z., Jiang, H., Zhu, Z., and Zhang, M., Org. Lett., 2019, vol. 21, p. 4725. https://doi.org/10.1021/acs.orglett.9b01608

    Article  CAS  PubMed  Google Scholar 

  25. Xu, L., Jiang, Y., and Ma, D., Org. Lett., 2012, vol. 14, p. 1150. https://doi.org/10.1021/ol300084v

    Article  CAS  PubMed  Google Scholar 

  26. Natte, K., Neumann, H., and Wu, X.F., Catal. Sci. Technol., 2015, vol. 5, p. 4447. https://doi.org/10.1039/C5CY00907C

    Article  CAS  Google Scholar 

  27. Ma, B., Wang, Y., Peng, J., and Zhu, Q., J. Org. Chem., 2011, vol. 76, p. 6366. https://doi.org/10.1021/jo2007362

    Article  CAS  Google Scholar 

  28. Liu, H.L., Li, X.T., Tian, H.Z., and Sun, X.W., Org. Lett., 2021, vol. 23, p. 4579. https://doi.org/10.1021/acs.orglett.1c01235

    Article  CAS  PubMed  Google Scholar 

  29. He, L., Li, H., Neumann, H., Beller, M., and Wu, X.F., Angew. Chem., Int. Ed., 2014, vol. 53, p. 1420. https://doi.org/10.1002/anie.201308756

    Article  CAS  Google Scholar 

  30. Wang, L.C., Du, S., Chen, Z., and Wu, X.F., Org. Lett., 2020, vol. 22, p. 5567. https://doi.org/10.1021/acs.orglett.0c01927

    Article  CAS  PubMed  Google Scholar 

  31. Ellof, J.N., Planta Med., 1998, vol. 64, p. 711. https://doi.org/10.1055/s-2006-957563

    Article  Google Scholar 

  32. Arora, P., Wani, Z.A., Nalli, Y., Ali, A., and Hassan, R.U., Microb. Ecol., 2016, vol. 72, p. 802. https://doi.org/10.1007/s00248-016-0805-x

    Article  CAS  PubMed  Google Scholar 

  33. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Approved Standard M07–A10, Wayne, PA (USA): Clinical and Laboratory Standards Institute, 2015.

  34. Berman, H.R., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Wessig, H., Shindyalov, I.N., and Bourne, P.E., Nucleic Acids Res., 2000, vol. 28, p. 235. https://doi.org/10.1093/nar/28.1.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kansız, S., Tolan, A., Azam, M., Dege, N., Alam, M., Sert, Y., Resayes, S.I., and Iҫbudak, H., Polyhedron, 2022, vol. 218, article ID 115762. https://doi.org/10.1016/j.poly.2022.115762

  36. Gümüş, M., Babacan, Ş.N., Demir, Y., Sert, Y., Koca, İ., and Gülҫin, İ., Arch. Pharm., 2022, vol. 355, article ID 2100242. https://doi.org/10.1002/ardp.202100242

  37. Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E., J. Comput. Chem., 2004, vol. 25, p. 1605. https://doi.org/10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the National Institute of Technology Srinagar for financial support of this study and the director, Prof. R. Sehgal for his assistance.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Rather.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rather, R.A., Ara, T. Synthesis, Antibacterial Activity, and Molecular Docking Study of 3-Phenylquinazolin-4(3H)-one Derivatives. Russ J Org Chem 59, 1591–1597 (2023). https://doi.org/10.1134/S1070428023090178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428023090178

Keywords:

Navigation