Skip to main content
Log in

Synthesis, Molecular Docking, and Biological Activity of Antimetabolites Based on Uracils and 5-Substituted 2,6-Dimethylpyrimidin-4(3H)-ones

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

5-Substituted 2,4-dimethyl-1,6-dihydropyrimidin-6-ones reacted with aromatic aldehydes to give 5-substituted 2-[(E)-2-arylethenyl]pyrimidin-6-ones, and the reaction of 5-(4-fluorobenzyl)-2,6-dimethylpyrimi­din-4(3H)-one with 4-fluorobenzaldehyde produced 5-(4-fluorobenzyl)-2,6-bis[(E)-2-(4-fluorophenyl)ethenyl]­pyrimidin-4(3H)-one. Uracil and 5-fluorouracil were alkylated with 2-(chloromethyl)-4-methoxybenzaldehyde, and the resulting 3-[2,4-dioxo- and 5-fluoro-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-yl)methyl]-4-methoxy­benz­aldehydes were condensed with 5-substituted 2,4-dimethyl-1,6-dihydropyrimidin-6-ones to obtain 1-(5-{(E)-2-[5-(butyl, arylmethyl)-4-methyl-6-oxo-1,6-dihydropyrimidin-2-yl]ethenyl}-2-methoxybenzyl)­uracil, -5-fluorouracil, and -5-bromouracil. The synthesized compounds were evaluated for their antibacterial, antitumor, and anti-monoaminoxidase activities, and their molecular docking to some biological targets was performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Fig. 1.

CONFLICT OF INTEREST

The authors declare the absence of conflict of interest.

Notes

  1. Hereinafter, primed locants refer to the substituent at position 5 of the pyrimidine ring, and double-primed locants, to the substituent at position 2.

REFERENCES

  1. Tylinska, B., Wiatrak, B., Czyznikowska, Z., Ciesla-Niech­wiadowicz, A., Gebarowska, E., and Janickak­los, A., Int. J. Mol. Sci., 2021, vol. 22, article no. 3825. https://doi.org/10.3390/ijms22083825

  2. Harutyunyan, A.A., Panosyan, G.A., Tamazyan, R.A., Aivazyan, A.G., Gukasyan, G.T., and Danagulyan, G.G., Russ. J. Org. Chem., 2018, vol. 54, p. 614. https://doi.org/10.1134/S1070428018040164

    Article  CAS  Google Scholar 

  3. Sanduja, M., Gupta, G., and Virmani, T., J. Appl. Pharm. Sci., 2020, vol. 10, p. 129. https://doi.org/10.7324/JAPS.2020.102019

    Article  CAS  Google Scholar 

  4. Harutyunyan, A.A., Gukasyan, G.T., Danagulyan, G.G., Panosyan, H.A., Tamazyan, R.A., and Aivazyan, A.G., Russ. J. Org. Chem., 2018, vol. 54, p. 771. https://doi.org/10.1134/S1070428018050160

    Article  CAS  Google Scholar 

  5. Li, P., Maier, J.M., Vik, E.C., Yehl, C.J., Dial, B.E., Rickher, A.E., Smith, M.D., Pellechia, P.J., and Shimizu, K.D., Angew. Chem., Int. Ed., 2017, vol. 56, p. 7209. https://doi.org/10.1002/anie.201702950

    Article  CAS  Google Scholar 

  6. Hambardzumyan, A.A., Hovsepyan, A.S., Hayrape­tyan, H.L., and Chailyan, S.G., Int. J. Pept. Res. Ther., 2021, vol. 27, p. 1597. https://doi.org/10.1007/s10989-021-10194-z

    Article  CAS  Google Scholar 

  7. Gao, Y., Yan, L., Huang, Y., Liu, F., Zhao, Y., Cao, L., Wang, T., Sun, Q., Ming, Z., Zhang, L., Ge, J., Zheng, L., Zhang, Y., Wang, H., Zhu, Y., Zhu, C., Hu, T., Hua, T., Zhang, B., Yang, X., Li, J., Yang, H., Liu, Z., Xu, W., Guddat, L.W., Wang, Q., Lou, Zh., and Rao, Z., Science, 2020, vol. 368, p. 779. https://doi.org/10.1126/science.abb7498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kirsch, K., Zeke, A., Toke, O., Sok, P., Sethi, A., Sebo, A., Kumar, G.S., Egri, P., Poti, A.L., Gooley, P., Peti, W., Bento, I., Alexa, A., and Remeny, A., Nat. Commun., 2020, vol. 11, p. 5769. https://doi.org/10.1038/s41467-020-19582-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Harutyunyan or A. A. Hambardzumyan.

Additional information

Translated from Zhurnal Organicheskoi Khimii, 2023, Vol. 59, No. 9, pp. 1179–1192 https://doi.org/10.31857/S0514749223090082.

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harutyunyan, A.A., Sumbatyan, A.S., Hambardzumyan, A.A. et al. Synthesis, Molecular Docking, and Biological Activity of Antimetabolites Based on Uracils and 5-Substituted 2,6-Dimethylpyrimidin-4(3H)-ones. Russ J Org Chem 59, 1511–1522 (2023). https://doi.org/10.1134/S1070428023090087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428023090087

Keywords:

Navigation