Skip to main content
Log in

Silicon Analogs of Unsaturated Hydrocarbons

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

The existing fundamental similarities in the chemistry of structurally related carbon and silicon compounds have been demonstrated. Stable silicon analogs of ethylene, silenes or silaethylenes R2C=SiR2 and disilenes R2Si=SiR2, as well as ethyne (acetylene) analogs, disilynes RSi≡SiR, have been considered. A number of unique branched (bulky) organic and organosilicon substituents have been described; the introduction of such substituents to double- or triple-bonded silicon atoms makes it possible to protect the latter from the action of atmospheric oxygen and moisture and prevent secondary dimerization (oligomerization) processes. Examples are given of steric protection for obtaining kinetically stable unsaturated silicon compounds which were characterized by IR, NMR, and UV-Vis spectroscopy and X-ray analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme

CONFLICT OF INTEREST

The authors declare the absence of conflict of interest in the financial or any other sphere.

REFERENCES

  1. West, R., Comprehensive Organometallic Chemistry, Wilkinson, G., Stone, F.G.A., and Abel, E.W., Eds., Oxford: Pergamon, 1982, vol. 2, p. 365.

  2. Nametkin, N.S., Gusel’nikov, L.E., Vdovin, V.M., Grinberg, P.L., Zav’yalov, V.I., and Oppengeim, V.D., Dokl. Akad. Nauk SSSR, 1966, vol. 171, p. 630.

    CAS  Google Scholar 

  3. Nametkin, N.S., Vdovin, V.M., Gusel’nikov, L.E., and Zav’yalov, V.I., Bull. Acad. Sci. USSR, Div. Chem. Sci., 1966, vol. 15, p. 563. https://doi.org/10.1007/BF00846138

    Article  Google Scholar 

  4. Nametkin, N.S., Gusel’nikov, L.E., Ushakova, R.L., and Vdovin, V.M., Bull. Acad. Sci. USSR, Div. Chem. Sci., 1971, vol. 20, p. 1740. https://doi.org/10.1007/BF00860053

    Article  Google Scholar 

  5. Conlin, R.T. and Gaspar, P.P., J. Am. Chem. Soc., 1976, vol. 98, p. 868. https://doi.org/10.1021/ja00419a055

    Article  CAS  Google Scholar 

  6. Atwell, H. and Weyenberg, R., Intra-Sci. Chem. Rep., 1973, vol. 7, p. 139.

    CAS  Google Scholar 

  7. Gusel’nikov, L.E., Nametkin, N.S., and Vdovin, V.M., Acc. Chem. Res., 1975, vol. 8, p. 18. https://doi.org/10.1021/ar50085a003

    Article  Google Scholar 

  8. Gusel’nikov, L.E. and Nametkin, N.S., Chem. Rev., 1979, vol. 79, p. 529. https://doi.org/10.1021/cr60322a004

    Article  Google Scholar 

  9. Coleman, B. and Jones, M., Rev. Chem. Intermed., 1981, vol. 4, p. 297. https://doi.org/10.1007/BF03052418

    Article  Google Scholar 

  10. Raab, G. and Michl, J., Chem. Rev., 1985, vol. 85, p. 419. https://doi.org/10.1021/cr00069a005

    Article  Google Scholar 

  11. Bertrand, G., Tringuer, G., and Mazerolles, P., J. Organomet. Chem. Libr., 1981, vol. 12, p. 1.

    CAS  Google Scholar 

  12. Brook, A.G., Harris, J.W., Lennon, J., and Sheikh, M., J. Am. Chem. Soc., 1979, vol. 101, p. 83. https://doi.org/10.1021/ja00495a015

    Article  CAS  Google Scholar 

  13. West, R., Fink, M.J., and Michl, J., Science, 1981, vol. 214, p. 1343. https://doi.org/10.1126/science.214.4527.1343

    Article  CAS  PubMed  Google Scholar 

  14. West, R., Science, 1984, vol. 225, p. 1109. https://doi.org/10.1126/science.225.4667.1109

    Article  CAS  PubMed  Google Scholar 

  15. Fink, M.J., De Young, D.J., West, R., and Michl, J., J. Am. Chem. Soc., 1983, vol. 105, p. 1070. https://doi.org/10.1021/ja00342a079

    Article  CAS  Google Scholar 

  16. Fink, M.J., Haller, K.J., West, R., and Michl, J., J. Am. Chem. Soc., 1984, vol. 106, p. 822. https://doi.org/10.1021/ja00315a077

    Article  CAS  Google Scholar 

  17. Michalczyk, M.J., Fink, M.J., Haller, K.J., West, R., and Michl, J., Organometallics, 1986, vol. 5, p. 531. https://doi.org/10.1021/om00134a023

    Article  CAS  Google Scholar 

  18. West, R., Angew. Chem., 1987, vol. 99, p. 1231. https://doi.org/10.1002/ange.19870991204

    Article  CAS  Google Scholar 

  19. Kudo, T. and Nagase, S., J. Am. Chem. Soc., 1985, vol. 107, p. 2589. https://doi.org/10.1021/ja00295a003

    Article  CAS  Google Scholar 

  20. Michalczyk, M.J., West, R., and Michl, J., J. Chem. Soc., Chem. Commun., 1984, p. 1525. https://doi.org/10.1039/C39840001525

  21. Gau, D., Nougue, R., Saffon-Merceron, N., Baceiredo, A., Cozar, A.D., Cossio, F.P., Hashizume, D., and Kato, T., Angew. Chem., Int. Ed., 2016, vol. 55, p. 14673. https://doi.org/10.1002/anie.201608416

    Article  CAS  Google Scholar 

  22. Schklower, W.E., Struchkov, Y.T., Guselnikov, L.E., Wolkowa, W.W., and Awakyan, W.G., Z. Anorg. Allg. Chem., 1983, vol. 501, p. 153. https://doi.org/10.1002/zaac.19835010618

    Article  Google Scholar 

  23. Weidenbruch, M., Willms, S., Saak, W., and Henkel, G., Angew. Chem., Int. Ed., 1997, vol. 36, p. 2503. https://doi.org/10.1002/anie199725031

    Article  CAS  Google Scholar 

  24. Bejan, J. and Scheschkewitz, D., Angew. Chem., Int. Ed., 2007, vol. 46, p. 5783. https://doi.org/10.1002/anie200701744

    Article  CAS  Google Scholar 

  25. Hague, D.N. and Prince, R.H., J. Chem. Soc., 1965, p. 4690. https://doi.org/10.1039/JR9650004690

  26. Pitt, C.G., Homoatomic Rings, Chains, and Macro­molecules of Main-Group Elements, Rheingold, A.L., Amsterdam: Elsevier, 1977, p. 203.

  27. Wiberg, N., Finger, C.M.M., and Polborn, K., Angew. Chem., Int. Ed. Engl., 1993, vol. 32, p. 1054. https://doi.org/10.1002/anie.199310541

    Article  Google Scholar 

  28. Wiberg, N., Niedermayer, W., Fischer, G., Nöth, H., and Suter, M., Eur. J. Inorg. Chem., 2002, vol. 2002, no. 5, p. 1066. https://doi.org/10.1002/1099-0682(200205)2002:5<1066::AID-EJIC1066>3.0.CO;2-6

    Article  Google Scholar 

  29. Wiberg, N., Vasisht, S. K., Fischer, G., and Mayer, P., Z. Anorg. Allg. Chem., 2004, vol. 630, p. 1823. https://doi.org/10.1002/zaac.200400177

    Article  CAS  Google Scholar 

  30. Sekiguchi, A., Kinjo, R., and Ichinohe, M., Science, 2004, vol. 305, p. 1755. https://doi.org/10.1126/science.1102209

    Article  CAS  PubMed  Google Scholar 

  31. Matsuo, T. and Tamao, K., Bull. Chem. Soc. Jpn., 2015, vol. 88, p. 1201. https://doi.org/10.1246/bcsj.20150130

    Article  CAS  Google Scholar 

  32. Präsang, C. and Scheschkewitz, D., Chem. Soc. Rev., 2016, vol. 45, p. 900. https://doi.org/10.1039/c5cs00720h

    Article  CAS  PubMed  Google Scholar 

  33. Semenov, V.V., Russ. Chem. Rev., 2011, vol. 80, p. 313. https://doi.org/10.1070/RC2011v080n04ABEH004110

    Article  CAS  Google Scholar 

Download references

Funding

This study was performed in the framework of state assignment no. FFSE-2023-0005 “Organic, Organoelement, and Coordination Compounds as Components of Materials for Modern High Technologies” (reg. no. 123031000051-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Semenov.

Additional information

Translated from Zhurnal Organicheskoi Khimii, 2023, Vol. 59, No. 9, pp. 1111–1120 https://doi.org/10.31857/S051474922309001X.

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenov, V.V., Zolotareva, N.V. Silicon Analogs of Unsaturated Hydrocarbons. Russ J Org Chem 59, 1457–1464 (2023). https://doi.org/10.1134/S1070428023090014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428023090014

Keywords:

Navigation