Skip to main content
Log in

Direct Synthesis of Unsymmetrical 1,3-Butadiynes from Calcium Carbide and Aryl Iodides

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

A novel methodology for the one-pot synthesis of unsymmetrical 1,3-butadiynes directly by the reaction of calcium carbide with aryl iodides is reported. This reaction system uses a safe, inexpensive, and easily handled acetylene source, and is easy to manipulate. This protocol is not only highly productive and selective, but also tolerates a wide range of functional groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Scheme 1.
Scheme 2.
Scheme 3.

REFERENCES

  1. Tang, J.L. and Zhao, X.M., RSC Adv., 2012, vol. 2, p. 5488. https://doi.org/10.1039/c2ra20326j

    Article  CAS  Google Scholar 

  2. Zhang, G.T., Yi, H., Chen, H., Bian, C.L., Liu, C., and Lei, A.W., Org. Lett., 2014, vol. 16, p. 6156. https://doi.org/10.1021/ol503015b

    Article  CAS  PubMed  Google Scholar 

  3. Jiang, H.F., Zeng, W., Li, Y.B., Wu, W.Q., Huang, L.B., and Wei, F., J. Org. Chem., 2012, vol. 77, p. 5179. https://doi.org/10.1021/jo300692d

    Article  CAS  PubMed  Google Scholar 

  4. Kramer, S., Madsen, J.L.H., Rottlander, M., and Skrydstrup, T., Org. Lett., 2010, vol. 12, p. 2758. https://doi.org/10.1021/ol1008685

    Article  CAS  PubMed  Google Scholar 

  5. Zheng, Q., Hua, R., Jiang, J., and Zhang, L., Tetrahedron, 2014, vol. 70, no. 44, p. 8252. https://doi.org/10.1016/j.tet.2014.09.025

    Article  CAS  Google Scholar 

  6. Matsuda, T., Kadowaki, S., and Murakami, T., Chem. Commun., 2007, vol. 25, p. 2627. https://doi.org/10.1039/b703397d

    Article  CAS  Google Scholar 

  7. Carmichael, D., Ricard, L., and Mathey, F., J. Chem. Soc., 1994, vol. 10, p. 1167. https://doi.org/10.1039/C39940001167

    Article  Google Scholar 

  8. Ewa, P.D., Ludmiła, S., and Lechosław, L.G., Chem. Eur. J., 2011, vol. 17, p. 3500. https://doi.org/10.1002/chem.201002765

    Article  CAS  Google Scholar 

  9. Ahmad, S., Yadav, K.K., Bhattacharya, S., Chauhan, P., and Chauhan, S.M.S., J. Org. Chem., 2015, vol. 80, p. 3880. https://doi.org/10.1021/acs.joc.5b00007

    Article  CAS  PubMed  Google Scholar 

  10. Alves, D., Luchese, C., Nogueira, C.W., and Zeni, G., J. Org. Chem., 2007, vol. 72, p. 6726. https://doi.org/10.1021/jo070835t

    Article  CAS  PubMed  Google Scholar 

  11. Lerch, M.L., Harper, M.K., and Faulkner, D.J., J. Nat. Prod., 2003, vol. 66, p. 667. https://doi.org/10.1021/np020544%2B

    Article  CAS  PubMed  Google Scholar 

  12. Zhou, Y.Z., Ma, H.Y., Chen, H., Qiao, L., Yao, Y., Cao, J.Q., and Pei, Y.H., Chem. Pharm. Bull., 2006, vol. 54, p. 1455. https://doi.org/10.1248/cpb.54.1455

    Article  CAS  Google Scholar 

  13. Mayer, S.F., Steinreiber, A., Orru, R.V.A., and Faber, K., J. Org. Chem., 2002, vol. 67, p. 9115. https://doi.org/10.1021/jo020073w

    Article  CAS  PubMed  Google Scholar 

  14. Zeni, G., Panatieri, R.B., Lissner, E., Menezes, P.H., Braga, A.L., and Stefani, H.A., Org. Lett., 2001, vol. 3, p. 819. https://doi.org/10.1021/ol006946v

    Article  CAS  PubMed  Google Scholar 

  15. Hay, A.S., J. Org. Chem., 1962, vol. 27, p. 3320. https://doi.org/10.1021/jo01056a511

    Article  CAS  Google Scholar 

  16. Hay, A.S., J. Org. Chem., 1960, vol. 25, p. 1275. https://doi.org/10.1021/jo01077a633

    Article  CAS  Google Scholar 

  17. Chemistry of Acetylenes, Cadiot, P., Chodkiewicz, W., and Viehe, H.G., Eds. New York: Marcel Dekker, 1969, p. 597.

  18. Nishihara, Y., Ikegashira, K., Mori, A., and Hiyama, T., Tetrahedron Lett., 1998, vol. 39, p. 4075. https://doi.org/10.1016/S0040-4039(98)00662-5

    Article  CAS  Google Scholar 

  19. Kang, S.K., Baik, T.G., Jiao, X.H., and Lee, Y.T., Tetrahedron Lett., 1999, vol. 40, p. 2383. https://doi.org/10.1016/S0040-4039(99)00194-X

    Article  CAS  Google Scholar 

  20. Dermenci, A., Whittaker, R.E., and Dong, G., Org. Lett., 2013, vol. 15, p. 2242. https://doi.org/10.1021/ol400815y

    Article  CAS  PubMed  Google Scholar 

  21. Rao, M.L.N., Islam, S.S., and Dasgupta, P., RSC Adv., 2015, vol. 5, p. 78090. https://doi.org/10.1039/C5RA15705F

    Article  CAS  Google Scholar 

  22. Rao, M.L.N., Dasgupta, P., Ramakrishna, B.S., and Murty, V.N., Tetrahedron Lett., 2014, vol. 55, p. 3529. https://doi.org/10.1016/j.tetlet.2014.04.092

    Article  CAS  Google Scholar 

  23. Andrade, C.B., Carvalho, D.B., Trefzger, O.S., Kassab, N.M., Guerrero, P.G.J., Barbosa, S.L., Shiguemoto, C.Y.K., and Baroni, A., Eur. J. Med. Chem., 2019, vol. 2019, p. 696. https://doi.org/10.1002/ejoc.201801242

    Article  CAS  Google Scholar 

  24. Liu, Z.R. and Li, Z., Eur. J. Org. Chem., 2021, vol. 2021, p. 302. https://doi.org/10.1002/ejoc.202001324

    Article  CAS  Google Scholar 

  25. Lin, Z., Yu, D., Sum, Y.N., and Zhang, Y., ChemSusChem., 2012, vol. 5, p. 625. https://doi.org/10.1002/cssc.201100649

    Article  CAS  PubMed  Google Scholar 

  26. Havashi, T., Kubo, A., and Ozawa, F., Pure Appl. Chem., 1992, vol. 64, p. 421. https://doi.org/10.1351/pac199264030421

    Article  Google Scholar 

  27. Polynski, M.V., Sapova, M.D., and Ananikov, V.P., Chem. Sci., 2020, vol. 11, p. 13102. https://doi.org/10.1039/d0sc04752j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hosseini, A., Pilevar, A., Hogan, E., Mogwitz, B., Schulze, A.S., and Schreiner, P.R., Org. Biomol. Chem., 2017, vol. 15, p. 6800. https://doi.org/10.1039/C7OB01334E

    Article  CAS  PubMed  Google Scholar 

  29. Lu, H. and Li, Z., Adv. Synth. Catal., 2019, vol. 361, p. 4474. https://doi.org/10.1002/adsc.201900733

    Article  CAS  Google Scholar 

  30. Vilhelmsen, M.H., Jensen, J., Tortzen, C.G., and Nielsen, M.B., Eur. J. Org. Chem., 2013, vol. 3013, p. 701. https://doi.org/10.1002/ejoc.201201159

    Article  CAS  Google Scholar 

  31. Seavill, P.W., Holt, K.B., and Wilden, J.D., Faraday Discuss., 2019, vol. 220, p. 269. https://doi.org/10.1039/c9fd00031c

    Article  CAS  PubMed  Google Scholar 

  32. Akhtar, R. and Zahoor, A.F., Synth. Commun., 2020, vol. 50, p. 3337. https://doi.org/10.1080/00397911.2020.1802757

    Article  CAS  Google Scholar 

Download references

Funding

The author gratefully acknowledges financial support from the Hebei Chemical & Pharmaceutical College.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhicai Zhao.

Ethics declarations

The authors declare no conflict of interest.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z. Direct Synthesis of Unsymmetrical 1,3-Butadiynes from Calcium Carbide and Aryl Iodides. Russ J Org Chem 59, 1436–1444 (2023). https://doi.org/10.1134/S1070428023080183

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428023080183

Keywords:

Navigation