Skip to main content
Log in

Microwave-assisted One-pot, Catalyst-free Synthesis of Novel 9H-[1,3]dioxolo[4,5-f]chromene Derivatives

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

A new one-pot three-component reaction for the synthesis of 9H-[1,3]dioxolo[4,5-f]chromene derivatives has been developed. The synthesis was achieved by reacting sesamol, aromatic aldehydes and (E)-N-methyl-1-(methylsulfanyl)-2-nitroethenamine under microwave irradiation. This transformation involves the formation of a chromene ring by creating two C–C bonds and one C–O bond in a single synthetic operation. This rapid one-pot reaction does not require a catalyst. It is solvent-free, avoids chromatographic purification, and provides good yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Scheme
Scheme
Scheme

REFERENCES

  1. Pratap, R. and Ram, V.J., Chem. Rev., 2014, vol. 114, p. 10476. https://doi.org/10.1021/cr500075s

    Article  CAS  PubMed  Google Scholar 

  2. Ellis, G.P. and Lockhart, I.M., Chromenes, chromanones, and chromones. In: The Chemistry of Heterocyclic Compounds, Ellis, G.P., Ed., New York: Wiley-VCH, 2007, vol. 31, p. 1196.

  3. Batista, J.M., Lopes, Jr, A.A., Ambrósio, D.L., Regasini, L.O., Kato, M.J., Bolzani, V.D.S., Cicarelli, B., and Furlan, M., Biol. Pharm. Bull., 2008, vol. 31, p. 538. https://doi.org/10.1248/bpb.31.538

    Article  CAS  PubMed  Google Scholar 

  4. Alsharif, M.A., Khan, D., Ahmed, N., Mukhtar, S., Khan, M.I., Hassan, A.S.A., and Almalki, R.J., ChemistrySelect, 2020, vol. 5, p. 498. https://doi.org/10.1002/slct.201904096

    Article  CAS  Google Scholar 

  5. Hardcastle, I.R., Cockcroft, X.L., Curtin, N.J., El-Murr, M.D., Leahy, J.J., Stockley, M., Golding, B.T., Rigoreau, L., Richardson, C., Smith, G.C.M., and Griffin, R.J., J. Med. Chem., 2005, vol. 48, p. 7829. https://doi.org/10.1021/jm050444b

    Article  CAS  PubMed  Google Scholar 

  6. Maloney, D.J., Chen, S.X., and Hecht, M.S., Org. Lett., 2006, vol. 8, p. 1925. https://doi.org/10.1021/ol060511b

    Article  CAS  PubMed  Google Scholar 

  7. Kidwai, M., Saxena, A.K., Khan, M.K.R., and Thukral, S.S., Bioorg. Med. Chem. Lett., 2005, vol. 15, p. 4295. https://doi.org/10.1016/j.bmcl.2005.06.041

    Article  CAS  PubMed  Google Scholar 

  8. Raj, T., Bhatia, R.K., Kapur, A., Sharma, M., Saxena, A.K., and Ishar, M.P.S., Eur. J. Med. Chem., 2010, vol. 45, p. 790. https://doi.org/10.1016/j.ejmech.2009.11.001

    Article  CAS  PubMed  Google Scholar 

  9. Venkatesham, A., Rao, R.S., Nagaiah, K., Yadav, J.S., Jones, G.R., Basha, S.J., and Sridhar, B., Med. Chem. Comm., 2012, vol. 3, p. 652. https://doi.org/10.1039/C2MD20023F

    Article  CAS  Google Scholar 

  10. Makawana, J.A., Patel, M.P., and Patel, R.G., Arch. Pharm., 2011, vol. 345, p. 314. https://doi.org/10.1002/ardp.201100203

    Article  CAS  Google Scholar 

  11. Saundane, A.R., Vijaykumar, K., and Vaijinath, A.V., Bioorg. Med. Chem. Lett., 2013, vol. 23, p. 1978. https://doi.org/10.1016/j.bmcl.2013.02.036

    Article  CAS  PubMed  Google Scholar 

  12. Paliwal, P.K., Jetti, S., and Jain, S., Med. Chem. Res., 2013, vol. 22, p. 2984. https://doi.org/10.1007/s00044-012-0288-3

    Article  CAS  Google Scholar 

  13. Upadhyay, K.D., Dodia, N.M., Khunt, R.C., Chaniara, R., and Shah, A.K., ACS Med. Chem. Lett., 2018, vol. 9, p. 283. https://doi.org/10.1021/acsmedchemlett.7b00545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Aminkhani, A., Talati, M., Sharifi, R., Chalabian, F.M., and Katouziam, F., J. Heterocycl. Chem., 2019, vol. 56, p. 1812. https://doi.org/10.1002/jhet.3555

    Article  CAS  Google Scholar 

  15. Shestopalov, A.M., Litvinov, Y.M., Rodinovskaya, L.A., Malyshev, O.R., Semenova, M.N., and Semenov, V.V., ACS Comb. Sci., 2012, vol. 14, p. 484. https://doi.org/10.1021/co300062e

    Article  CAS  PubMed  Google Scholar 

  16. Dintzner, M.R., Wucka, P.R., and Lyons, T.W., J. Chem. Educ., 2006, vol. 83, p. 270. https://doi.org/10.1021/ed083p270

    Article  CAS  Google Scholar 

  17. Bloxham, J., Dell, C.P., and Smith, C.W., Heterocycles, 1994, vol. 38, p. 399.

    Article  CAS  Google Scholar 

  18. Ballini, R., Bosica, G., Conforti, M.L., Maggi, R., Mazzacani, A., Righi, P., and Sartori, G., Tetrahedron, 2001, vol. 57, p. 1395. https://doi.org/10.1016/S0040-4020(00)01121-2

    Article  CAS  Google Scholar 

  19. Wang, X.S., Yang, G.S., and Zhao, G., Tetrahedron Asymmetry, 2008, vol. 19, p. 709. https://doi.org/10.1016/j.tetasy.2008.02.018

    Article  CAS  Google Scholar 

  20. Hu, K., Lu, A., Wang, Y., and Zhou, C., Tetrahedron Asymmetry, 2013, vol. 24, p. 953. https://doi.org/10.1016/j.tetasy.2013.07.010

    Article  CAS  Google Scholar 

  21. Adili, A., Tao, Z., Chen, D., and Han, Z., Org. Biomol. Chem., 2015, vol. 13, p. 2247. https://doi.org/10.1039/C4OB02602K

    Article  CAS  PubMed  Google Scholar 

  22. Patil, S.A., Siddappa, A.P., and Patil, R., Future Med. Chem., 2015, vol. 7, p. 893. https://doi.org/10.4155/fmc.15.38

    Article  CAS  PubMed  Google Scholar 

  23. Nishibayashi, Y., Inada, Y., Hidai, H., and Uemura, S., J. Am. Chem. Soc., 2002, vol. 124, p. 7900. https://doi.org/10.1021/ja026168x

    Article  CAS  PubMed  Google Scholar 

  24. Liu, Y., Qian, J., Lou, S., Zhu, J., and Xu, Z., J. Org. Chem., 2010, vol. 75, p. 1309. https://doi.org/10.1021/jo902619x

    Article  CAS  PubMed  Google Scholar 

  25. Shi, L.Y. and Shi, M., Org. Lett., 2005, vol. 7, p. 3057. https://doi.org/10.1021/ol051044l

    Article  CAS  PubMed  Google Scholar 

  26. Fan, F. and Wang, Z., Chem. Commun., 2008, p. 5381. https://doi.org/10.1039/B812046C

  27. Liang, D., Wang, M., Bekturhun, B., Xiong, B., and Liu, Q., Adv. Synth. Catal., 2010, vol. 352, p. 1593. https://doi.org/10.1002/adsc.201000062

    Article  CAS  Google Scholar 

  28. Fang, Y.W. and Li, C., J. Org. Chem., 2006, vol. 71, p. 6427. https://doi.org/10.1021/jo060747t

    Article  CAS  PubMed  Google Scholar 

  29. Malakar, C.C., Schmidt, D., Conrad, J., and Beifuss, U., Org. Lett., 2011, vol. 13, p. 1972. https://doi.org/10.1021/ol200347g

    Article  CAS  PubMed  Google Scholar 

  30. Liu, C., Zhang, X., Wang, R., and Wang, W., Org. Lett., 2010, vol. 12, p. 4948. https://doi.org/10.1021/ol102096s

    Article  CAS  PubMed  Google Scholar 

  31. Li, M., Zhang, B., and Gu, Y., Green Chem., 2012, vol. 14, p. 2421. https://doi.org/10.1039/C2GC35668F

    Article  CAS  Google Scholar 

  32. Reddy, P.N. and Padmaja, Adv. Org. Synth., 2020, vol. 13, p. 273.

    Article  Google Scholar 

  33. Saigal, S., Khan, H., Rahman, S., and Khan, Md.M., RSC Adv., 2019, vol. 9, p. 14477. https://doi.org/10.1039/C9RA00630C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are highly indebted to the authorities of the GITAM University for providing financial support for this work and grateful to the Department of Chemistry, GITAM School of Science, Hyderabad, for providing laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Sharath Babu.

Ethics declarations

The authors declare no conflict of interest.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avula, R., Babu, H.S. & Venkatanarayana, M. Microwave-assisted One-pot, Catalyst-free Synthesis of Novel 9H-[1,3]dioxolo[4,5-f]chromene Derivatives. Russ J Org Chem 59, 1417–1423 (2023). https://doi.org/10.1134/S107042802308016X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107042802308016X

Keywords:

Navigation