Skip to main content
Log in

Convenient Synthesis and Characterization of Novel Phytosteroid Derivatives and Their DFT, QTAIM, NCI–RDG, and Molecular Docking Study: A Combined Experimental and Theoretical Approach

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

The synthesis of novel steroid derivatives by the F ring opening in diosgenin in the presence of BF3∙OEt2 as a catalyst have been reported. The structural assignment of the synthesized compounds was performed by means of FTIR and 1H, 13C, and 2D NMR spectroscopy and ESI–HRMS and confirmed by DFT/B3LYP calculations. Hydrogen bonding and other multiple interactions were analyzed in detail in terms of Bader’s theory of atoms in molecules. The NCI–RDG analysis gave evidence showing that derivatives are stabilized by a series of weak C–H∙∙∙O hydrogen bonds and C–H and H–H interactions. The reactivity descriptors and MEP analysis allowed identification of the reactive sites in the studied molecules. The energy gap and ionization energy of synthesized derivatives have also been calculated to identify chemical reactivity. The molar refractivities of the products were estimated at 109–153.98 esu, implying the ability of the synthesized compounds to bind target protein and their potential as candidate drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Fig. 1.
Fig. 2.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

REFERENCES

  1. Chen, Y., Tang, Y. M., Tang, Yu, S.L., Han, Y.W., Kou, J.P., and Liu, B.L., Chin. J. Nat. Med., 2015, vol. 13, p. 578. https://doi.org/10.1016/S1875-5364(15)30053-4

    Article  CAS  PubMed  Google Scholar 

  2. Jesus, M., Martins, A.P., Gallardo, E., and Silvestre, S., J. Anal. Methods Chem., 2016, vol. 2016, article no. 4156293. https://doi.org/10.1155/2016/4156293

  3. Gallegos, A.A.M., Luna, G.G., Gonzalez, A.O., Garcia, M.C., Bernes, S., and Linares, M.G.H., Steroids, 2021, vol. 166, article no. 108777. https://doi.org/10.1016/j.steroids.2020.108777

  4. Lai, W., Wu, Z., and Lin, H., J. Nat. Prod., 2010, vol. 73, p. 1053. https://doi.org/10.1021/np900815p

    Article  CAS  PubMed  Google Scholar 

  5. Barile, E., Capasso, R., and Izzo, A.A., Planta. Med., 2005, vol. 71, p. 1010. https://doi.org/10.1055/s2005-873134

    Article  CAS  PubMed  Google Scholar 

  6. Chem, H.F., Wang, G.H., and Luo, Q., Molecules, 2009, vol. 14, p. 2246. https://doi.org/10.3390/molecules14062246

    Article  CAS  Google Scholar 

  7. Hiroyuki, F. Setsuko, S., and Kanami, H., Chem. Pharm. Bull., 2008, vol. 56, p. 93. https://doi.org/10.1248/cpb.56.93

    Article  Google Scholar 

  8. Isik, I.B. and Sagdinc, S.G., J. Mol. Struct., 2021, vol. 1245, article no. 130981. https://doi.org/10.1016/j.molstruc.2021.130981

  9. Yadav, P., Pandey, S.K., Shama, P., Kumar, S., Banerjee, M., and Sethi. A., J. Mol. Struct., 2021, vol. 1245, article no. 131115. https://doi.org/10.1016/j.molstruc.2021.131115

  10. Sethi, A., Singh, P., Yadav, N., Prakash, R., Singh, R.P., Yadav, P., and Banerjee, M., J. Mol. Struct., 2020, vol. 1204, article no. 127512. https://doi.org/10.1016/j.molstruc.2019.127512

  11. Sethi, A., Singh, P., Yadav, N., Yadav, P., Banerjee, M., and Singh, R.P., J. Mol. Struct., 2019, vol. 1180, p. 733. https://doi.org/10.1016/j.molstruc.2018.12.009

    Article  CAS  Google Scholar 

  12. Yang, D., Wu, J., Jia, M., and Song, X., J. Chin. Chem. Soc., 2017, vol. 64, p. 1385. https://doi.org/10.1002/jccs.201700253

    Article  CAS  Google Scholar 

  13. Koopmans, T., Physica, 1934, vol. 1, p. 104. https://doi.org/10.1016/S0031-8914(34)90011-2

    Article  Google Scholar 

  14. Pearson, R.G., J. Org. Chem., 1989, vol. 54, p. 1423. https://doi.org/10.1021/jo00267a034

    Article  CAS  Google Scholar 

  15. Parr, R.G. and Pearson, R.G., J. Am. Chem. Soc., 1983, vol. 105, p. 7512. https://doi.org/10.1021/ja00364a005

    Article  CAS  Google Scholar 

  16. Greelings, P., Proft, F.D., and Langenaeker, W., Chem. Rev., 2003, vol. 103, p. 1793. https://doi.org/10.1021/cr990029p

    Article  CAS  Google Scholar 

  17. Parr, R.G., Szentpály, L.V., and Liu, S., J. Am. Chem. Soc., 1999, vol. 121, p. 1922. https://doi.org/10.1021/ja983494x

    Article  CAS  Google Scholar 

  18. Chattaraj, P.K. and Giri, S., J. Phys. Chem. A, 2007, vol. 111, p. 11116. https://doi.org/10.1021/jp0760758

    Article  CAS  PubMed  Google Scholar 

  19. Alirezapour, F. and Khanmohammadi, A., J. Chin. Chem. Soc., 2021, vol. 68, p. 1002. https://doi.org/10.1002/jccs.202000383

    Article  CAS  Google Scholar 

  20. Bader, R.F.W., Chem. Rev., 1991, vol. 91, p. 893. https://doi.org/10.1021/cr00005a013

    Article  CAS  Google Scholar 

  21. Pakiari, A.H. and Eskandari, K., J. Mol. Struct. (THEOCHEM), 2006, vol. 759, p. 51. https://doi.org/10.1016/j.theochem.2005.10.040

    Article  CAS  Google Scholar 

  22. Rozas, I., Alkorta, I., and Elguero, J., J. Am. Chem. Soc., 2000, vol. 122, p. 11154. https://doi.org/10.1021/ja0017864

    Article  CAS  Google Scholar 

  23. Koch, U. and Popelier, P.L.A., J. Phys. Chem., 1995, vol. 99, p. 9747. https://doi.org/10.1021/j100024a016

    Article  CAS  Google Scholar 

  24. Shainyan, B.A., Chipanina, N.N., Aksamentova, T.N., Oznobikhina, L.P., Rosentsveig, G.N., and Rosentsveig, I.B., Tetrahedron, 2010, vol. 66, p. 8551. https://doi.org/10.1016/j.tet.2010.08.076

    Article  CAS  Google Scholar 

  25. Schuster, P., Zundel, G., and Sandrafy, C., The Hydrogen Bond: Recent Developments in Theory and Experiments, Amsterdam: North-Holland Pub. Co., New York: Distributor, American Elsevier Pub. Co., 1976.

  26. Nowroozi, A., Raissi, H., and Farzad, F., J. Mol. Struct. (THEOCHEM), 2005, vol. 730, p. 161. https://doi.org/10.1016/j.theochem.2005.04.018

    Article  CAS  Google Scholar 

  27. Espinosa, E., Molins, E., and Lecomte, C., Chem. Phys. Lett., 1998, vol. 285, p. 170. https://doi.org/10.1016/S0009-2614(98)00036-0

    Article  CAS  Google Scholar 

  28. Sethi, A., Singh, R.P., Shukla, D., and Singh, P., J. Mol. Struct., 2016, vol. 1125, p. 616. https://doi.org/10.1016/j.molstruc.2016.07.020

    Article  CAS  Google Scholar 

  29. Yangang, L., Peter, H., and Daum, Aer. Sci., 2008, vol. 39, p. 974. https://doi.org/10.1016/j.jaerosci.2008.06.006

    Article  CAS  Google Scholar 

  30. Uddin, M.N., Begum, S., Akter, J., Ahmed, S.S., Rahman, M.S., and Shumi, W., J. Chin. Chem. Soc., 2022, vol. 69, p. 703. https://doi.org/10.1002/jccs.202100319

    Article  CAS  Google Scholar 

  31. Hosseini, F.S. and Amanlou, M., Life Sci., 2020, vol. 258, article no. 118205. https://doi.org/10.1016/j.lfs.2020.118205

  32. Liu, C., Zhou, Q., Li, Y., Garner, L., Watkins, S.P., Carter, L.J., Smoot, J., Gregg, A.C., Daniels, A.D., Jervey, S., and Albaiu, D., ACS Cent. Sci., 2020, vol. 6, p. 315. https://doi.org/10.1021/acscentsci.0c00272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Huey, R. and Morris, G.M., The Scripps Research Institute, USA, 2008, p. 54.

  34. Vijesh, A.M., Isloor, A.M., Telkar, S., Arumoli, T., and Fun, H.K., Arab. J. Chem., 2013, vol. 6, p. 197. https://doi.org/10.1016/j.arabjc.2011.10.007

    Article  CAS  Google Scholar 

  35. Trott, O. and Olson, A.J., J. Comp. Chem., 2010, vol. 31, p. 455. https://doi.org/10.1002/jcc.21334

    Article  CAS  Google Scholar 

  36. DeLano, W.L., Pymol: an Open-Source Molecular Graphics Tool. CCP4 Newsletter on Protein Crystallography, 2002, vol. 40, p. 82.

    Google Scholar 

  37. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, C.J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., Gaussian 09 W, Revision D.01, Gaussian, Inc., Wallingford CT, 2013.

  38. Lee, C., Yang, W., and Parr, R., Phys. Rev., 1988, vol. 37, p. 785. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  39. Keith Todd A., AIMAII, Version 10.05.04, TK Gristmill Software, Overland Park KS, USA, 2010.

  40. Lu, T. and Chen, F., Multiwfn: A Multifunctional Wavefunction Analyzer, 2012, vol. 33, p. 580. https://doi.org/10.1002/jcc.22885

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sethi.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Singh, R.P., Prakash, R. et al. Convenient Synthesis and Characterization of Novel Phytosteroid Derivatives and Their DFT, QTAIM, NCI–RDG, and Molecular Docking Study: A Combined Experimental and Theoretical Approach. Russ J Org Chem 59, 1382–1396 (2023). https://doi.org/10.1134/S1070428023080134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428023080134

Keywords:

Navigation