Skip to main content
Log in

Silica-Zinc Chloride (SiO2-ZnCl2)-Mediated Facile Synthesis of Some Nitro-Substituted Arylimidazopyridine Analogs

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

Silica-zinc chloride (SiO2-ZnCl2)-mediated method has been developed for the synthesis of 2-nitro-3-arylimidazo[1,2-a]pyridine derivatives from 2-aminopyridines and β-nitrostyrenes. This new methodology offers operational simplicity, mild conditions, easy workup process, and good to excellent yields of various 3-aryl-2-nitroimidazo[1,2-a]pyridines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Scheme
Scheme

REFERENCES

  1. Langer, S.Z., Arbilla, S., Benavides, J., and Scatton, B., Adv. Biochem. Psychopharmacol., 1990, vol. 46, p. 61.

    CAS  PubMed  Google Scholar 

  2. Katritzky, A.R., Xu, Y.J., and Tu, H., J. Org. Chem., 2003, vol. 68, p. 4935. https://doi.org/10.1021/jo026797p

    Article  CAS  PubMed  Google Scholar 

  3. Okubo, T., Yoshikawa, R., Chaki, S., Okuyama, S., and Nakazato, A., Bioorg. Med. Chem., 2004, vol. 12, p. 423. https://doi.org/10.1016/j.bmc.2003.10.050

    Article  CAS  PubMed  Google Scholar 

  4. Allen, J., Parent, G., and Tizot, A., J. Labelled Compd. Radiopharm., 1986, vol. 23, p. 807. https://doi.org/10.1002/jlcr.2580230803

    Article  CAS  Google Scholar 

  5. Harrison, T.S. and Keating, G.M., CNS Drugs, 2005, vol. 19, p. 65. https://doi.org/10.2165/00023210-200519010-00008

    Article  CAS  Google Scholar 

  6. Jain, A.N., J. Med. Chem., 2004, vol. 47, p. 947. https://doi.org/10.1021/jm030520f

    Article  CAS  PubMed  Google Scholar 

  7. Wiegand, M.H., Drugs, 2008, vol. 68, p. 2411. https://doi.org/10.2165/0003495-200868170-00001

    Article  CAS  PubMed  Google Scholar 

  8. Hsu, N., Jha, S.K., Coleman, T., and Frank, M.G., Behav. Brain Res., 2009, vol. 201, p. 233. https://doi.org/10.1016/j.bbr.2009.02.018

    Article  CAS  PubMed  Google Scholar 

  9. Veron, J.B., Allouchi, H., Gueiffier, C.E., Snoeck, R., de Clercq, A.E., and Gueiffier, A., Bioorg. Med. Chem., 2008, vol. 16, p. 9536. https://doi.org/10.1016/j.bmc.2008.09.027

    Article  CAS  PubMed  Google Scholar 

  10. Hanson, S.M., Morlock, E.V., Satyshur, K.A., and Czajkowski, C., J. Med. Chem., 2008, vol. 51, p. 7243. https://doi.org/10.1021/jm800889m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xiao, S., Liu, Z., Zhao, J., Pei, M., Zhang, G., and He, W., RSC Adv., 2016, vol. 6, p. 27119. https://doi.org/10.1039/C6RA01800A

    Article  CAS  Google Scholar 

  12. Stasyuk, A.J., Banasiewicz, M., Cyranski, M.K., and Gryko, D.T., J. Org. Chem., 2012, vol. 77, p. 5552. https://doi.org/10.1021/jo300643w

    Article  CAS  PubMed  Google Scholar 

  13. Shao, N., Pang, G.X., Yan, C.X., Shi, G.F., and Cheng, Y., J. Org. Chem., 2011, vol. 76, p. 7458. https://doi.org/10.1021/jo201273p

    Article  CAS  PubMed  Google Scholar 

  14. Gudmundsson, K.S., Williams, J.D., Drach, J.C., and Townsend, L.B., J. Med. Chem., 2003, vol. 46, p. 1449. https://doi.org/10.1021/jm020339r

    Article  CAS  PubMed  Google Scholar 

  15. Moraski, G.C., Markley, L.D., Chang, M., Cho, S., Franzblau, S.G., Hwang, C.H., Boshoff, H., and Miller, M.J., Bioorg. Med. Chem., 2012, vol. 20, p. 2214. https://doi.org/10.1016/j.bmc.2012.02.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Almirante, L., Polo, L., Mugnaini, A., Provinciali, E., Rugarli, P., Biancotti, A., Gamba, A., and Murmann, W., J. Med. Chem., 1965, vol. 8, p. 305. https://doi.org/10.1021/jm00327a007

    Article  CAS  PubMed  Google Scholar 

  17. Fisher, M.H. and Lusi, A., J. Med. Chem., 1972, vol. 15, p. 982. https://doi.org/10.1021/jm00279a026

    Article  CAS  PubMed  Google Scholar 

  18. Bochis, R.J., Olen, L.E., Waksmunski, F.S., Mrozik, H., Eskola, P., and Kulsa, P., J. Med. Chem., 1981, vol. 24, p. 1483. https://doi.org/10.1021/jm00144a022

    Article  CAS  PubMed  Google Scholar 

  19. Sundberg, R.J., Biswas, S., Murthi, K.K., and Rowe, D., J. Med. Chem., 1998, vol. 41, p. 4317. https://doi.org/10.1021/jm9803368

    Article  CAS  PubMed  Google Scholar 

  20. Palmer, A.M., Chrismann, S., Münch, G., Brehm, C., Zimmermann, P.J., Buhr, W., Senn-Bilfinger, J., Feth, M.P., and Simon, W.A., Bioorg. Med. Chem., 2009, vol. 17, p. 368. https://doi.org/10.1016/j.bmc.2008.10.055

    Article  CAS  PubMed  Google Scholar 

  21. Bode, M.L., Gravestock, D., Moleele, S.S., van der Westhuyzen, C.W., Pelly, S.C., Steenkamp, P.A., Hoppe, H.C., Khan, T., and Nkabinde, L.A., Bioorg. Med. Chem., 2011, vol. 19, p. 4227. https://doi.org/10.1016/j.bmc.2011.05.062

    Article  CAS  PubMed  Google Scholar 

  22. Matsumoto, S., Miyamoto, N., Hirayama, T., Oki, H., Okada, K., Tawada, M., Iwata, H., Nakamura, K., Yamasaki, S., Miki, H., Hori, A., and Imamura, S., Bioorg. Med. Chem., 2013, vol. 21, p. 7686. https://doi.org/10.1016/j.bmc.2013.10.028

    Article  CAS  PubMed  Google Scholar 

  23. Hirayama, T., Okaniwa, M., Banno, H., Kakei, H., Ohashi, A., Iwai, K., Ohori, M., Mori, K., Gotou, M., Kawamoto, T., Yokota, A., and Ishikawa, T., J. Med. Chem., 2015, vol. 58, p. 8036. https://doi.org/10.1021/acs.jmedchem.5b00836

    Article  CAS  PubMed  Google Scholar 

  24. Gladysz, R., Adriaenssens, Y., De Winter, H., Joos­sens, J., Lambeir, A.M., Augustyns, K., and Van der Veken, P., J. Med. Chem., 2015, vol. 58, p. 9238. https://doi.org/10.1021/acs.jmedchem.5b01171

    Article  CAS  PubMed  Google Scholar 

  25. Mukhopadhyay, S., Dighe, S.U., Kolle, S., Shukla, P.K., and Batra, S., Eur. J. Org. Chem., 2016, vol. 2016, no. 22, p. 3836. https://doi.org/10.1002/ejoc.201600553

    Article  CAS  Google Scholar 

  26. Yan, R.L., Yan, H., Ma, C., Ren, Z.Y., Gao, X.A., Huang, G.S., and Liang, Y.M., J. Org. Chem., 2012, vol. 77, p. 2024. https://doi.org/10.1021/jo202447p

    Article  CAS  PubMed  Google Scholar 

  27. Santra, S., Bagdi, A.K., Majee, A., and Hajra, A., Adv. Synth. Catal., 2013, vol. 355, p. 1065. https://doi.org/10.1002/adsc.201201112

    Article  CAS  Google Scholar 

  28. Bazin, M.A., Marhadour, S., Tonnerre, A., and Marchand, P., Tetrahedron Lett., 2013, vol. 54, p. 5338. https://doi.org/10.1016/j.tetlet.2013.07.106

    Article  CAS  Google Scholar 

  29. Talbot, E.P.A., Richardson, M., McKenna, J.M., and Dean Toste, F., Adv. Synth. Catal., 2014, vol. 356, p. 687. https://doi.org/10.1002/adsc.201300996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Monir, K., Ghosh, M., Jana, S., Mondal, P., Majee, A., and Hajra, A., Org. Biomol. Chem., 2015, vol. 13, p. 8717. https://doi.org/10.1039/C5OB01345C

    Article  CAS  PubMed  Google Scholar 

  31. Payra, S., Saha, A., and Banerjee, S., RSC Adv., 2016, vol. 6, p. 12402. https://doi.org/10.1039/C5RA25540F

    Article  CAS  Google Scholar 

  32. Ramesh, C., Ravindranath, N., and Das, B., J. Org. Chem., 2003, vol. 68, p. 7101. https://doi.org/10.1021/jo030088+

    Article  CAS  PubMed  Google Scholar 

  33. Tanaka, K. and Toda, F., Chem. Rev., 2000, vol. 100, p. 1025. https://doi.org/10.1021/cr940089p

    Article  CAS  PubMed  Google Scholar 

  34. Bauer, I. and Knolker, H.J., Chem. Rev., 2015, vol. 115, p. 3170. https://doi.org/10.1021/cr500425u

    Article  CAS  PubMed  Google Scholar 

  35. Jagan, M.R., Murthy Boddapati, S.N., Raghuram, M., Syed, F.A., Mohammed, R.S., Osamah, A., Mohammed Rafiq, H.S., and Hari Babu, B., Appl. Sci., 2020, vol. 10, article no. 3792. https://doi.org/10.3390/app10113792

  36. Murthy Boddapati, S.N., Ramana, T., Ravi Kumar, G., Sharmila, N., Mohammed, E.A., Osamah, A., Mohammed Rafiq, H.S., Hari Babu, B., and Syed, F.A., Molecules, 2020, vol. 25, article no. 1788. https://doi.org/10.3390/molecules25081788

  37. Murthy Boddapati, S.N., Chandra Mohan, K., Baby Ramana, M., Ramana, T., and Hari Babu, B., Org. Biomol. Chem., 2018, vol. 16, p. 8267. https://doi.org/10.1039/C8OB02018C

    Article  Google Scholar 

  38. Monir, K., Bagdi, A.K., Ghosh, M., and Hajra, A., Org. Lett., 2014, vol. 16, p. 4630. https://doi.org/10.1021/ol502218u

    Article  CAS  PubMed  Google Scholar 

  39. Tzani, M.A., Kallitsakis, M.G., Symeonidis, T.S., and Lykakis, I.N., ACS Omega, 2018, vol. 3, p. 17947. https://doi.org/10.1021/acsomega.8b03047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yadav, S., Srivastava, M., Rai, P., Tripathi, B.P., Mishra, A., Singh, J., and Singh, J., New J. Chem., 2016, vol. 40, p. 9694. https://doi.org/10.1039/C6NJ02365G

    Article  CAS  Google Scholar 

  41. Uppalapati, D.S., Reddy Dachuru, R.S., and Sun­kara, S.V., J. Heterocycl. Chem., 2021, vol. 58, p. 1695. https://doi.org/10.1002/jhet.4280

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. H. Babu.

Ethics declarations

The authors declare no conflict of interest.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishna, A.V., Babu, B.H. Silica-Zinc Chloride (SiO2-ZnCl2)-Mediated Facile Synthesis of Some Nitro-Substituted Arylimidazopyridine Analogs. Russ J Org Chem 59, 1192–1197 (2023). https://doi.org/10.1134/S1070428023070102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428023070102

Keywords:

Navigation