Skip to main content
Log in

A Novel Synthesis of 2-Quinolinyl Chromones Using Grinding Technique under Solvent-Free Conditions

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

A simple, efficient, and eco-friendly procedure for the synthesis of 2-quinolinyl chromones via oxidative cyclization of 2-hydroxyquinolinyl chalcones by grinding with ammonium iodide at room temperature under solvent-free conditions has been described. The protocol is very efficient as the reactions are carried out at room temperature with high yields and avoid the use of hazardous chemicals and organic solvents at any stage of the reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme

REFERENCES

  1. Mostahar, S., Katun, P., and Islam, A., J. Biol. Sci., 2007, vol. 7, pp. 514. https://doi.org/10.3923/jbs.2007.514.519

    Article  CAS  Google Scholar 

  2. Katade, S., Phalgune, Biswas, U.S., Wakharkar, R., and Deshpande, N., Indian J. Chem., Sect. B, 2008, vol. 47, p. 927.

    Google Scholar 

  3. Yoo, H., Kim, S.H., Lee, J., Kim, H.J., Seo, S.H., Chung, B.Y. Jin, C., and Lee, Y.S., Bull. Korean Chem. Soc., 2005, vol. 26, p. 2057. https://doi.org/10.5012/bkcs.2005.26.12.2057

    Article  CAS  Google Scholar 

  4. Sowndhararajan, K., Deepa, P., Kim, M., Park, S.J., and Kim, S., Biomed. Pharmacother., 2017, vol. 95, p. 1021. https://doi.org/10.1016/j.biopha.2017.08.135

    Article  CAS  PubMed  Google Scholar 

  5. Antoni, S., Xavier, C., and Silvia, T., Curr. Med. Chem., 2019, vol. 26, p. 5124. https://doi.org/10.2174/0929867325666171226103237

    Article  CAS  Google Scholar 

  6. Lin, Y., Shi, R., Wang, X., and Shen, H.-M., Curr. Cancer Drug Targets, 2008, vol. 8, p. 634. https://doi.org/10.2174/156800908786241050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Imran, M., Rauf, A., Abu-Izneid, T., Nadeem, M., Shariati, M.A., Khan, I.A., Imran, A., Orhan, I.E., Rizwan, M., Atif, M., Gondal, T.A., and Mubarak, M.S., Biomed. Pharmacother., 2019, vol. 112, article ID 108612. https://doi.org/10.1016/j.biopha.2019.108612

  8. Choy, K.W., Murugan, D., Leong, X.-F., Abas, R., Alias, A., and Mustafa, M.R., Front. Pharmacol., 2019, vol. 10, article no. 1295. https://doi.org/10.3389/fphar.2019.01295

  9. Ginwala, R., Bhavsar, R., Chigbu, D.G.I., Jain, P., and Khan, Z.K., Antioxidants, 2019, vol. 8, article no. 35. https://doi.org/10.3390/antiox8020035

  10. Keriko, J.M., Nakajima, S., Baba, N., Isozaki, Y., and Iwasa, J., Sci. Rep. Fac. Agric. Okayama Univ., 1995, vol. 84, p. 7. https://ousar.lib.okayama-u.ac.jp/11123

    CAS  Google Scholar 

  11. Wu, J.-H., Wang, X.-H., Yi, Y.-H., and Lee, K.-H., Bioorg. Med. Chem. Lett., 2003, vol. 13, p. 1813. https://doi.org/10.1016/S0960-894X(03)00197-5

    Article  CAS  PubMed  Google Scholar 

  12. Venkatesan, P. and Moorthi, K., E-J. Chem., 2012, vol. 9, p. 1017. https://doi.org/10.1155/2012/354875

    Article  CAS  Google Scholar 

  13. Mokle, S.S. and Vibhute, Y.B., Pharma Chem., 2009, vol. 1, p. 145.

    CAS  Google Scholar 

  14. Michael, J.P., Nat. Prod. Rep., 1992, vol. 9, p. 25. https://doi.org/10.1039/NP9920900025

    Article  CAS  PubMed  Google Scholar 

  15. Aguinaldo, A.M., Dalangin-Mallari, V.M., Maca­beo, A.P.G., Byrne, L.T., Abe, F., Yamauchi, T., and Franzblau, S.G., Int. J. Antimicrob. Agents, 2007, vol. 29, p. 744. https://doi.org/10.1016/j.ijantimicag.2007.02.004

    Article  CAS  PubMed  Google Scholar 

  16. Boyd, D.R., Sharma, N.D., Loke, P.L., Malone, J.F., McRoberts, W.C., and Hamilton, J.T.G., Org. Biomol. Chem., 2007, vol. 5, p. 2983. https://doi.org/10.1039/B707576F

    Article  CAS  PubMed  Google Scholar 

  17. Cretton, S., Breant, L., Pourrez, L., Ambuehl, C., Marcourt, L., Ebrahimi, S.N., Hamburger, M., Perozzo, R., Karimou, S., Kaiser, M., Cuendet, M., and Christen, P., J. Nat. Prod., 2014, vol. 77, p. 2304. https://doi.org/10.1021/np5006554

    Article  CAS  PubMed  Google Scholar 

  18. Raynes, K., Foley, M., Tilley, L., Deady, L., and Deady, W., Biochem. Pharmacol., 1996, vol. 52, p. 551. https://doi.org/10.1016/0006-2952(96)00306-1

    Article  CAS  PubMed  Google Scholar 

  19. Travins, J.M., Ali, F., Huang, H., Ballentine, S.K., Khalil, E., Hufnagel, H.R., Pan, W., Gushue, J., Leonard, K., Bone, R.F., Soll, R.M., DesJarlais, R.L. Crysler, C.S., Ninan, N., Kirkpatrick, J., Cum­mings, M.D., Huebert, N., Molloy, C.J., Gaul, M., Tomczuk, B.E., and Subasinghe, N.L., Bioorg. Med. Chem. Lett., 2008, vol. 18, p. 1603. https://doi.org/10.1016/j.bmcl.2008.01.064

    Article  CAS  PubMed  Google Scholar 

  20. Eswaran, S., Adhikari, A.V., Chowdhury, I.H., Pal, N.K., Thomas, K., and Thomas, D., Eur. J. Med. Chem., 2010, vol. 45, p. 3374. https://doi.org/10.1016/j.ejmech.2010.04.022

    Article  CAS  PubMed  Google Scholar 

  21. Kumar, S., Bawa, S., Drabu, S., and Panda, B.P., Med. Chem. Res., 2010, vol. 20, p. 1340. https://doi.org/10.1007/s00044-010-9463-6

    Article  CAS  Google Scholar 

  22. Cai, Z., Zhou, W., and Sun, L., Bioorg. Med. Chem., 2007, vol. 15, p. 7809. https://doi.org/10.1016/j.bmc.2007.08.044

    Article  CAS  PubMed  Google Scholar 

  23. Allan, J. and Robinson, R., J. Chem. Soc., 1924, vol. 125, p. 2192. https://doi.org/10.1039/CT9242502192

    Article  CAS  Google Scholar 

  24. Makrandi, J.K. and Seema, Chem. Ind. (London), 1989, vol. 1989, p. 607.

    Google Scholar 

  25. Hu, J., Adogla, E.A., Ju, Y., Fan, D., and Wang, Q., Chem. Commun., 2012, vol. 48, p. 11256. https://doi.org/10.1039/C2CC36176K

    Article  CAS  Google Scholar 

  26. Naeimi, H. and Moradi, L., Russ. J. Org. Chem., 2007, vol. 43, p. 1757. https://doi.org/10.1134/S1070428007120032

    Article  CAS  Google Scholar 

  27. Bensari, A. and Zaveri, N.T., Synthesis, 2003, vol. 2003, p. 267. https://doi.org/10.1055/s-2003-36822

    Article  Google Scholar 

  28. Galindo, F., Jimenez, M.C., Miranda, M.A., and Tormos, R., J. Photochem. Photobiol., A, 1996, vol. 97, p. 151. https://doi.org/10.1016/1010-6030(95)04267-9

    Article  CAS  Google Scholar 

  29. Naeimi, H., Raeisi, A., and Moradian, M., Arab. J. Chem., 2017, vol. 10, p. S2723. https://doi.org/10.1016/j.arabjc.2013.10.017

  30. Ahmed, N., Ali, H., and van Lier, J.E., Tetrahedron Lett., 2005, vol. 46, p. 253. https://doi.org/10.1016/j.tetlet.2004.11.062

    Article  CAS  Google Scholar 

  31. Kumar, K.H. and Perumal, P.T., Tetrahedron, 2007, vol. 63, p. 9531. https://doi.org/10.1016/j.tet.2007.06.051

    Article  CAS  Google Scholar 

  32. Du, Z., Ng, H., Zhang, K., Zeng, H., and Wang, J., Org. Biomol. Chem., 2011, vol. 9, p. 6930. https://doi.org/10.1039/c1ob06209c

    Article  CAS  PubMed  Google Scholar 

  33. de la Torre, M.D.L., Marcorin, G.L., Pirri, G., Tome, A.C., Silva, A.M.S., and Cavaleira, J.A.S., Tetrahedron Lett., 2002, vol. 43, p. 1689. https://doi.org/10.1016/S0040-4039(02)00122-3

    Article  CAS  Google Scholar 

  34. Imafuku, K., Honda, M., and McOmie, J.F.W., Synthesis, 1987, vol. 1987, p. 199. https://doi.org/10.1055/s-1987-27891

    Article  Google Scholar 

  35. Hans, N. and Grover, S.K., Synth. Commun., 1993, vol. 23, p. 1021. https://doi.org/10.1080/00397919308013299

    Article  CAS  Google Scholar 

  36. Gobbi, S., Rampa, A., Bisi, A., Belluti, F., Piazzi, L., Valent, P., Caputo, A., Zampiron, A., and Carrara, M., J. Med. Chem., 2003, vol. 46, p. 3662. https://doi.org/10.1021/jm030771o

    Article  CAS  PubMed  Google Scholar 

  37. Zwaagstra, M.E., Timmerman, H., van de Stolpe, A.C., de Kanter, F.J.J., Tamura, M., Wada, Y., and Zhang, M.-Q., J. Med. Chem., 1998, vol. 41, p. 1428. https://doi.org/10.1021/jm970179x

    Article  CAS  PubMed  Google Scholar 

  38. Pfister, J.R., Wymann, W.E., Schuler, M.E., and Rosz­kow­ski, A.P., J. Med. Chem., 1980, vol. 23, p. 335. https://doi.org/10.1021/jm00177a029

    Article  CAS  PubMed  Google Scholar 

  39. Chang, M.-Y., Tsai, M.-C., and Lin, C.-Y., RSC Adv., 2021, vol. 11, p. 11655. https://doi.org/10.1039/D1RA00534K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sharma, D., Makrandi, J.K., and Kumar, S., Green Chem. Lett. Rev., 2009, vol. 2, p. 53. https://doi.org/10.1080/17518250903002343

    Article  CAS  Google Scholar 

  41. Sharma, D., Kumar, S., and Makrandi, J.K., Green Chem. Lett. Rev., 2015, vol. 8, p. 21. https://doi.org/10.1080/17518253.2015.1058975

    Article  CAS  Google Scholar 

  42. Sharma, D., Res. Chem. Intermed., 2015, vol. 41, p. 927. https://doi.org/10.1007/s11164-013-1245-6

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Kumar.

Ethics declarations

The authors declare the absence of conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, D., Kaushik, M.K. A Novel Synthesis of 2-Quinolinyl Chromones Using Grinding Technique under Solvent-Free Conditions. Russ J Org Chem 59, 1059–1063 (2023). https://doi.org/10.1134/S1070428023060131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428023060131

Keywords:

Navigation