Skip to main content
Log in

Electrochemical Aspect of the Synthesis of 2-Nitroethanol-Based Heteroarchitecture

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

The compatibility of several functional groups appeared much tapered in classical coupling organic reaction due to the use of strong bases, organic solvents, and reagents. Therefore, an innovative electrochemical strategy of activating an acidic hydrogen in the ethanol/lithium perchlorate system has been described to accomplish the criteria of ecological footprint for the synthesis of 2-nitroethanol-based heteroarchitecture. This innovative protocol is simple and clean, and it sets the stage for designing molecular hydrogen via in situ electrogenerated base (EGBS). After screening different solvents, it has been found that the ethanol/lithium perchlorate electrolyte system has unleashed power that indirectly activates an acidic hydrogen in an active methylene compound. For clarity, a concise study has been performed on dissociation constant value and its effect on redox potential that is stimulated indirectly through electrical input. This tactic offers several advantages such as a cleaner reaction profile, shorter reaction time, simple workup procedure, and excellent yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Scheme
Scheme
Scheme
Scheme

REFERENCES

  1. Olivier, J.G.J., Janssens-Maenhout, G., Muntean, M., Peters, J.A.H.W., Trends in Global CO2 Emissions: 2014 Report, The Hague: PBL Netherlands Environmental Assessment Agency, 2014. https://www.pbl.nl/en/publications/trends-in-global-co2-emissions-2014-report

  2. Costantino, U., Curini, M., Marmottini, F., Rosati, O., and Pisani, E., Chem. Lett., 1994, vol. 23, p. 2215. https://doi.org/10.1246/cl.1994.2215

    Article  Google Scholar 

  3. Ballini, R., Bosica, G., and Forconi, P., Tetrahedron, 1996, vol. 52, p. 1677. https://doi.org/10.1016/0040-4020(95)00996-5

    Article  CAS  Google Scholar 

  4. Singh, K., Singh, J., and Singh, H., Tetrahedron, 1996, vol. 52, p. 14273. https://doi.org/10.1016/0040-4020(96)00879-4

    Article  CAS  Google Scholar 

  5. Jin, T., Liu, L., Zhao, Y., and Li, T., Synth. Commun., 2005, vol. 35, p. 1859. https://doi.org/10.1081/SCC-200064898

    Article  CAS  Google Scholar 

  6. Devi, I. and Bhuyan, P.J., Tetrahedron Lett., 2004, vol. 45, p. 8625. https://doi.org/10.1016/j.tetlet.2004.09.158

    Article  CAS  Google Scholar 

  7. Gao, S., Hsuan, C., Tsai, C.T., and Yao, C., Tetrahedron, 2008, vol. 64 p. 9143. https://doi.org/10.1016/j.tet.2008.06.061

    Article  CAS  Google Scholar 

  8. Jin, T.S., Wang, A.Q., Wang, X., Zhang, J.S., and Li, T.S., Synlett, 2004, vol. 2004, no. 5, p. 871. https://doi.org/10.1055/s-2004-820025

    Article  CAS  Google Scholar 

  9. Renewables Global Status Report, REN21, Paris, 2017. https://www.ren21.net/reports/global-status-report

  10. Saraswat, A. and Sharma, A., J. Indian Chem. Soc., 2021, vol. 98, article ID 100247. https://doi.org/10.1016/j.jics.2021.100247

  11. Saraswat, A. and Sharma, A., J. Indian Chem. Soc., 2021, vol. 98, article ID 100130. https://doi.org/10.1016/j.jics.2021.100130

  12. Wiebe, A., Gieshoff, T., Möhle, S., Rodrigo, E., Zirbes, M., and Waldvogel, S.R., Angew. Chem., Int. Ed., 2018, vol. 57, p. 5594. https://doi.org/10.1002/anie.201711060

    Article  CAS  Google Scholar 

  13. Shono, T. and Mitani, M., J. Am. Chem. Soc., 1968, vol. 90, p. 2728. https://doi.org/10.1021/ja01012a068

    Article  CAS  Google Scholar 

  14. Reutov, A., Beletskaya, I.P., and Butin, K.P., CH Acids, Oxford: Pergamon, 1978.

  15. Jaun, B., Schwarz, J., and Breslow, R., J. Am. Chem. Soc., 1980, vol. 102, p. 5741. https://doi.org/10.1021/ja00538a008

    Article  CAS  Google Scholar 

  16. Barrette, W.C., Johnson, H.W., and Sawyer, D.T., Anal. Chem., 1984, vol. 56, p. 1890. https://doi.org/10.1021/ac00275a030

    Article  CAS  PubMed  Google Scholar 

  17. Nicholas, A.M. de P. and Arnold, D.R., Can. J. Chem., 1982, vol. 60, p. 2165. https://doi.org/10.1139/v82-310

    Article  CAS  Google Scholar 

  18. Bordwell, F.G. and Cheng, J., J. Am. Chem. Soc., 1991, vol. 113, p. 1736. https://doi.org/10.1021/ja00005a042

    Article  CAS  Google Scholar 

  19. Parker, V.D. and Tilset, M., J. Am. Chem. Soc., 1988, vol. 110, p. 1649. https://doi.org/10.1021/ja00213a062

    Article  CAS  Google Scholar 

  20. Shono, T. and Mitani, M., J. Am. Chem. Soc., 1968, vol. 90, p. 2728. https://doi.org/10.1021/ja01012a068

    Article  CAS  Google Scholar 

  21. Iversen, P.E. and Lund, H., Tetrahedron Lett., 1969, vol. 10, p. 3523. https://doi.org/10.1016/S0040-4039(01)88438-0

    Article  Google Scholar 

  22. Treimer, S.E. and Evans, D.H., J. Electroanal. Chem., 1998, vol. 449, p. 39. https://doi.org/10.1016/S0022-0728(97)00478-6

    Article  CAS  Google Scholar 

  23. Saraswat, A., Srivastav, M.K., and Pal Singh, R.K., Asian J. Chem., 2020, vol. 32, p. 2778. https://doi.org/10.14233/ajchem.2020.22841

    Article  CAS  Google Scholar 

  24. Klein, G., Pandiaraju, S., and Reiser, O., Tetrahedron Lett., 2002, vol. 43, p. 7503. https://doi.org/10.1016/S0040-4039(02)01768-9

    Article  CAS  Google Scholar 

  25. Weeden, J.A. and Chisholm, J.D., Tetrahedron Lett., 2006, vol. 47, p. 9313. https://doi.org/10.1016/j.tetlet.2006.10.107

    Article  CAS  Google Scholar 

  26. Sanjeevakumar, N. and Periasamy, M., Tetrahedron: Asymmetry, 2009, vol. 20, p. 1842. https://doi.org/10.1016/j.tetasy.2009.07.040

    Article  CAS  Google Scholar 

  27. Soldi, L., Ferstl, W., Loebbecke, S., Maggi, R., Malmassari, C., Sartori, G., and Yada, S., J. Catal., 2008, vol. 258, p. 289. https://doi.org/10.1016/j.jcat.2008.07.005

    Article  CAS  Google Scholar 

  28. Wang, W., Cheng, W., Shao, L., Liu, C.-H., and Yang, J., Kinet. Catal., 2009, vol. 50, p. 186. https://doi.org/10.1134/S0023158409020074

    Article  CAS  Google Scholar 

  29. Rodríguez, J.M. and Dolors Pujol, M., Tetrahedron Lett., 2011, vol. 52, p. 2629. https://doi.org/10.1016/j.tetlet.2011.03.037

    Article  CAS  Google Scholar 

  30. Saraswat, A., Sharma, L.K., Singh, S., Siddiqui, I.R., and Singh, R.K.P., Res. Chem. Intermed., 2013, vol. 39, p. 1393. https://doi.org/10.1007/s11164-012-0695-6

    Article  CAS  Google Scholar 

  31. Donaruma, G., J. Polym. Sci.: Polym. Lett. Ed., vol. 22, p. 459. https://doi.org/10.1002/pol.1984.130220809

  32. Rao, Y.V.S., De Vos, D.E., and Jacobs, P.A., Angew. Chem., Int. Ed. Engl., 1997, vol. 36, p. 2661. https://doi.org/10.1002/anie.199726611

    Article  CAS  Google Scholar 

  33. Rao, K.K., Gravelle, M., Valente, J.S., and Figueres, F., J. Catal., 1998, vol. 173, p. 115. https://doi.org/10.1006/jcat.1997.1878

    Article  CAS  Google Scholar 

  34. Pollet, P., Davey, E.A., Ureña-Benavides, E.E., Eckert, C.A., and Liotta, C.L., Green Chem., 2014, vol. 16, p. 1034. https://doi.org/10.1039/C3GC42302F

    Article  CAS  Google Scholar 

  35. Tshepelevitsh, S., Kütt, A., Lõkov, M., Kaljurand, I., Saame, J., Heering, A., Plieger, P.G., Vianello, R., and Leito, I., Eur. J. Org. Chem, 2019, vol. 2019, p. 6735. https://doi.org/10.1002/ejoc.201900956

    Article  CAS  Google Scholar 

  36. Upadhyay, A., Sharma, L.K., Singh, V.K., and Singh, R.K.P., Tetrahedron Lett., 2016, vol. 57, p. 5599. https://doi.org/10.1016/j.tetlet.2016.10.111

    Article  CAS  Google Scholar 

  37. Saraswat, A. and Pal Singh, R.K., Asian J. Chem., 2020, vol. 32, p. 1697. https://doi.org/10.14233/ajchem.2020.22663

  38. Dubey, R., Singh, V.K., Sharma, L.K., Upadhyay, A., Kumar, N., and Singh, R.K.P., New J. Chem., 2017, vol. 41, p. 7836. https://doi.org/10.1039/C7NJ01211J

  39. Fathi, S. and Sardarian, A.R., Iran. J. Sci. Technol., Trans. A: Sci., 2016, vol. 40, p. 103. https://doi.org/10.1007/s40995-016-0002-2

    Article  Google Scholar 

  40. Hirata, N. and Hayashi, M., Synth. Commun., 2007, vol. 37, p. 1653. https://doi.org/10.1080/00397910701263833

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Saraswat.

Ethics declarations

The author declares no conflict of interest

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saraswat, A. Electrochemical Aspect of the Synthesis of 2-Nitroethanol-Based Heteroarchitecture. Russ J Org Chem 59, 1041–1047 (2023). https://doi.org/10.1134/S1070428023060118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428023060118

Keywords:

Navigation