Skip to main content
Log in

Synthesis of 5-Chloro-3-styryl-1H-pyrazoles Based on 2,2-Dichlorovinyl Ketones

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

The condensation of 4,4-dichlorobut-3-en-2-one with aromatic aldehydes in the presence of a cata­lytic amount of sulfuric acid afforded 1,1-dichloro-5-(4-R-phenyl)penta-1,4-dien-3-ones which reacted with substituted hydrazines under mild conditions in chemo- and regioselective fashion to give 3-[(E)-2-arylethenyl]-5-chloro-1-methyl-1H-pyrazoles in up to 81% yield. The reaction of 4-bromo-1,1-dichloro-5-(4-methoxy­phenyl)­penta-1,4-dien-3-one with N,N-dimethylhydrazine produced 3-[1-bromo-2-(4-methoxyphenyl)­ethenyl]-5-chloro-1-methyl-1H-pyrazole which was converted to 5-chloro-3-[(4-methoxyphenyl)­ethynyl]-1-methyl-1H-pyrazole in 69% yield on heating in DMSO in the presence of KF at 120°C. The structure of the synthesized compounds was confirmed by IR, NMR, and mass spectra and elemental analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Scheme

REFERENCES

  1. Marinescu, M., Antibiotics, 2021, vol. 10, article no. 1002. https://doi.org/10.3390/antibiotics10081002

  2. Faria, J.V., Vegi, P.F., Miguita, A.G.C., Silva dos Santos, M., Boechat, N., and Bernardino, A.M.R., Bioorg. Med. Chem., 2017, vol. 25, p. 5891. https://doi.org/10.1016/j.bmc.2017.09.035

    Article  CAS  PubMed  Google Scholar 

  3. Karrouchi, K., Radi, S., Ramli, Y., Taoufik, J., Mabkhot, Y.N., Al-aizari, F.A., and Ansar, M., Molecules, 2018, vol. 23, article no. 134. https://doi.org/10.3390/molecules23010134

  4. Ansari, A., Ali, A., Asif, M., and Shamsuzzaman, New J. Chem., 2017, vol. 41, p. 16. https://doi.org/10.1039/c6nj03181a

    Article  CAS  Google Scholar 

  5. Khan, M.F., Alam, M.M., Verma, G., Akhtar, W., Akhter, M., and Shaquiquzzaman, M., Eur. J. Med. Chem., 2016, vol. 120, p. 170. https://doi.org/10.1016/j.ejmech.2016.04.077

    Article  CAS  PubMed  Google Scholar 

  6. Kücükgüzel, Ş.G. and Şekardeş, S., Eur. J. Med. Chem., 2015, vol. 97, p. 786. https://doi.org/10.1016/j.ejmech.2014.11.059

    Article  CAS  PubMed  Google Scholar 

  7. Bennani, F.E., Doudach, L., Gherrah, Y., Ramli, Y., Karrouchi, K., Ansar, M., and Faouzi, M.E.A., Bioorg. Chem., 2020, vol. 97, article no. 103470. https://doi.org/10.1016/j.bioorg.2019.103470

  8. Silva, V.L.M., Elguero, J., and Silva, A.M.S., Eur. J. Med. Chem., 2018, vol. 156, p. 394. https://doi.org/10.1016/j.ejmech.2018.07.007

    Article  CAS  PubMed  Google Scholar 

  9. Jeschke, P., Eur. J. Org. Chem., 2022, vol. 2022, article ID e202101513. https://doi.org/10.1002/ejoc.202101513

  10. Kashyap, S., Singh, R., and Singh, U.P., Coord. Chem. Rev., 2020, vol. 417, article ID 213369. https://doi.org/10.1016/j.ccr.2020.213369

  11. Alkorta, I., Claramunt, R.M., Dies-Barra, E., Elguero, J., de la Hoz, A., and Lopez, C., Coord. Chem. Rev., 2017, vol. 339, p. 153. https://doi.org/10.1016/j.ccr.2017.03.011

    Article  CAS  Google Scholar 

  12. Mukherjee, R., Coord. Chem. Rev., 2000, vol. 203, p. 151. https://doi.org/10.1016/S0010-8545(99)00144-7

    Article  CAS  Google Scholar 

  13. Dias, H.R.V. and Lovely, C.J., Chem. Rev., 2008, vol. 108, p. 3223. https://doi.org/10.1021/cr078362d

    Article  CAS  PubMed  Google Scholar 

  14. El Boutaybi, M., Taleb, A., Touzani, R., and Bahari, Z., Mater. Today Proc., 2020, vol. 31, p. 96. https://doi.org/10.1016/j.matpr.2020.06.249

    Article  CAS  Google Scholar 

  15. El Boutaybi, M., Taleb, A., Touzani, R., and Bahari, Z., Arab. J. Chem. Environ. Res., 2020, vol. 7, p. 1.

    CAS  Google Scholar 

  16. Pettinari, C., Tăbăcaru, A., and Galli, S., Coord. Chem. Rev., 2016, vol. 307, p. 1. https://doi.org/10.1016/j.ccr.2015.08.005

    Article  CAS  Google Scholar 

  17. Aysha, T.A., Mohamed, M.B.I., El-Sedik, M.S., and Youssef, Y.A., Dyes Pigm., 2021, vol. 196, article ID 109795. https://doi.org/10.1016/j.dyepig.2021.109795

  18. Demircali, A., Karci, F., and Sari, F., Color. Technol., 2021, vol. 137, p. 280. https://doi.org/10.1111/cote.12530

    Article  CAS  Google Scholar 

  19. Tao, T., Zhao, X.-L., Wang, Y.-Y., Oian, H.-F., and Huang, W., Dyes Pigm., 2019, vol. 166, p. 226. https://doi.org/10.1016/j.dyepig.2019.03.046

    Article  CAS  Google Scholar 

  20. Fustero, S., Sánchez-Roselló, M., Barrio, P., and Simón-Fuentes, A., Chem Rev., 2011, vol. 111, p. 6984. https://doi.org/10.1021/cr2000459

    Article  CAS  PubMed  Google Scholar 

  21. Fustero, S., Simón-Fuentes, A., and Sanz-Cervera, J.F., Org. Prep. Proced. Int., 2009, vol. 41, p. 253. https://doi.org/10.1080/00304940903077832

    Article  CAS  Google Scholar 

  22. Janin, Y.L., Chem. Rev., 2012, vol. 112, p. 3924. https://doi.org/10.1021/cr200427q

    Article  CAS  PubMed  Google Scholar 

  23. Abdelhamid, I.A., Hawass, M.A.E., Sanad, S.M.H., and Elwahy, A.H.M., Arkivoc, 2021, vol. 2021, part (i), p. 162. https://doi.org/10.24820/ark.5550190.p011.404

    Article  Google Scholar 

  24. Abdelhamid, I.A., Hawass, M.A.E., Sanad, S.M.H., and Elwahy, A.H.M., Arkivoc, 2021, vol. 2021, part (ix), p. 42. https://doi.org/10.24820/ark.5550190.p011.542

    Article  CAS  Google Scholar 

  25. Zhang, Q., Hu, B., Zhao, Y., Zhao, S., Wang, Y., Zhang, B., Yan, S., and Yu, F., Eur. J. Org. Chem., 2020, vol. 2020, p. 1154. https://doi.org/10.1002/ejoc.201901886

    Article  CAS  Google Scholar 

  26. Moon, H.R., Yu, J., Kim, K.H., and Kim, J.N., Bull. Korean Chem. Soc., 2015, vol. 36, p. 1189. https://doi.org/10.1002/bkcs.10225

    Article  CAS  Google Scholar 

  27. Almirante, N., Cerri, A., Fedrizzi, G., Marazzi, G., and Santagostino, M., Tetrahedron Lett., 1998, vol. 39, p. 3287. https://doi.org/10.1016/S0040-4039(98)00472-9

    Article  CAS  Google Scholar 

  28. Adamo, M.F.A., Adlington, R.M., Baldwin, J.E., Pritchard, G.J., and Rathmell, R.E., Tetrahedron, 2003, vol. 59, p. 2197. https://doi.org/10.1016/S0040-4020(03)00244-8

    Article  CAS  Google Scholar 

  29. Baldwin, J.E., Pritchard, G.E., and Rathmell, R.E., J. Chem. Soc., Perkin Trans. 1, 2001, p. 2906. https://doi.org/10.1039/b108645f

  30. Sherin, D.R. and Rajasekharan, K.N., Arch. Pharm. (Weinheim, Ger.), 2015, vol. 348, p. 908. https://doi.org/10.1002/ardp.201500305

  31. Zona, C. and La Ferla, B.L., J. Labelled Compd. Radiopharm., 2011, vol. 54, p. 629. https://doi.org/10.1002/jlcr.1907

    Article  CAS  Google Scholar 

  32. Shim, J.S., Kim, D.H., Jung, H.J., Kim, J.H., Lim, D., Lee, S.-K., Kim, K.-W., Ahn, J.W., Yoo, J.-S., Rho, J.-R., Shin, J., and Kwon, H.J., Bioorg. Med. Chem., 2002, vol. 10, p. 2439. https://doi.org/10.1016/S0968-0896(02)00116-5

    Article  PubMed  Google Scholar 

  33. Kim, H.T., Ha, H., Kang, G., Kim, O.S., Ryu, H., Biswas, A.K., Lim, S.M., Baik, M.-H., and Joo, J.M., Angew. Chem., Int. Ed., 2017, vol. 56, p. 16262. https://doi.org/10.1002/anie.201709162

    Article  CAS  Google Scholar 

  34. Jagtap, R.A., Vinod, C.P., and Punji, B., ACS Catal., 2019, vol. 9, p. 431. https://doi.org/10.1021/acscatal.8b04267

    Article  CAS  Google Scholar 

  35. Arbačiauskienė, E., Martynaitis, V., Krikštolaitytė, S., Holzer, W., and Šačkus, A., Arkivoc, 2011, vol. 2011, part (xi), p. 1. https://doi.org/10.3998/ark.5550190.0012.b01

    Article  Google Scholar 

  36. Mazeikaite, R., Sudzius, J., Urbelis, G., and Labanaus­kas, L., Arkivoc, 2014, vol. 2014, part (vi), p. 54. https://doi.org/10.3998/ark.5550190.p008.842

    Article  CAS  Google Scholar 

  37. Karabiyikoglu, S. and Zora, M., Appl. Organomet. Chem., 2016, vol. 30, p. 876. https://doi.org/10.1002/aoc.3516

    Article  CAS  Google Scholar 

  38. Vasilevsky, S.F., Klyatskaya, S.V., Tretyakov, E.V., and Elguero, J., Heterocycles, 2003, vol. 60, p. 879. https://doi.org/10.3987/COM-02-9698

    Article  CAS  Google Scholar 

  39. Eller, G.A., Vilkauskaite, G., Arbačiauskienė, E., Šačkus, A., and Holzer, W., Synth. Commun., 2011, vol. 41, p. 541. https://doi.org/10.1080/00397911003629382

    Article  CAS  Google Scholar 

  40. Vilkauskaite, G., Šačkus, A., and Holzer, W., Eur. J. Org. Chem., 2011, vol. 2011, p. 5123. https://doi.org/10.1002/ejoc.20110026

    Article  CAS  Google Scholar 

  41. Arbačiauskienė, E., Vilkauskaite, G., Šačkus, A., and Holzer, W., Eur. J. Org. Chem., 2011, vol. 2011, p. 1880. https://doi.org/10.1002/ejoc.201001560

    Article  CAS  Google Scholar 

  42. Liu, J., Xu, E., Jiang, J., Huang, Z., Zheng, L., and Liu, Z.-Q., Chem. Commun., 2020, vol. 56, p. 2202. https://doi.org/10.1039/c9cc09657d

    Article  CAS  Google Scholar 

  43. Mi, P., Lang, J., and Lin, S., Chem. Commun., 2019, vol. 55, p. 7986. https://doi.org/10.1039/c9cc03363g

    Article  CAS  Google Scholar 

  44. Fan, Z., Feng, J., Hou, Y., Rao, M., and Cheng, J., Org. Lett., 2020, vol. 22, p. 7981. https://doi.org/10.1021/acs.orglett.0c02911

    Article  CAS  PubMed  Google Scholar 

  45. Yoshimatsu, M., Kawahigashi, M., Honda, E., and Kata­oka, T., J. Chem. Soc., Perkin Trans. 1, 1997, p. 695. https://doi.org/10.1039/A605542G

  46. Levkovskaya, G.G., Kobelevskaya, V.A., Rudyako­va, E.V., Ha, K.H., Samultsev, D.O., and Rozen­tsveig, I.B., Tetrahedron, 2011, vol. 67, p. 1844. https://doi.org/10.1016/j.tet.2011.01.028

    Article  CAS  Google Scholar 

  47. Kobelevskaya, V.A., Popov, A.V., Levkovskaya, G.G., Rudyakova, E.V., and Rozentsveig, I.B., Russ. J. Org. Chem., 2018, vol. 54, p. 1505. https://doi.org/10.1134/S1070428018100111

    Article  CAS  Google Scholar 

  48. Levkovskaya, G.G., Rudyakova, E.V., Kobelev­skaya, V.A., Popov, A.V., and Rozentsveig, I.B., Arkivoc, 2016, vol. 2016, part (iii), p. 82. https://doi.org/10.3998/ark.5550190.p009.383

    Article  CAS  Google Scholar 

  49. Popov, A.V., Kobelevskaya, V.A., Larina, L.I., and Levkovskaya, G.G., Mendeleev Commun., 2017, vol. 27, p. 178. https://doi.org/10.1016/j.mencom.2017.03.024

    Article  CAS  Google Scholar 

  50. Popov, A.V., Kobelevskaya, V.A., Larina, L.I., and Ro­zentsveig, I.B., Arkivoc, 2019, vol. 2019, part (vi), p. 1. https://doi.org/10.24820/ark.5550190.p010.934

    Article  CAS  Google Scholar 

  51. Kobelevskaya, V.A., Popov, A.V., Nikitin, A.Ya., and Levkovskaya, G.G., Russ. J. Org. Chem., 2017, vol. 53, p. 144. https://doi.org/10.1134/S1070428017010298

    Article  CAS  Google Scholar 

  52. Kobelevskaya, V.A., D’yachkova, S.G., Popov, A.V., and Levkovskaya, G.G., Russ. J. Org. Chem., 2016, vol. 52, p. 911. https://doi.org/10.1134/S1070428016060270

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The spectral and analytical data were obtained using the facilities of the Baikal joint analytical center at the Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kobelevskaya.

Ethics declarations

The authors declare the absence of conflict of interest.

Additional information

Translated from Zhurnal Organicheskoi Khimii, 2023, Vol. 59, No. 6, pp. 772–780 https://doi.org/10.31857/S0514749223060058.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobelevskaya, V.A., Zinchenko, S.V. & Popov, A.V. Synthesis of 5-Chloro-3-styryl-1H-pyrazoles Based on 2,2-Dichlorovinyl Ketones. Russ J Org Chem 59, 1000–1007 (2023). https://doi.org/10.1134/S1070428023060052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428023060052

Keywords:

Navigation