Skip to main content
Log in

Synthesis and Biological Activity of Phosphorylated Quaternary Ammonium Salts

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

A series of phosphorylated quaternary ammonium salts (QASs) containing isobutyl substituents on the phosphorus atom and higher alkyl substituents on the nitrogen atom were prepared in two steps. The QASs containing octyl to tetradecyl substituents on the nitrogen atom showed high antimicrobial activity against B. cereus, S. aureus, and E. coli bacterial strains, as well as C. albicans fungal strain, whereas hexa- and octadecyl-substituted QASs were inactive against the test pathogenic strains of microorganisms. As shown by 31Р NMR spectroscopy, the synthesized QASs underwent hydrolysis in air to form the corresponding phosphorylated betaines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Scheme

REFERENCES

  1. Romani, L., Nature Rew. Immunology J., 2004, vol. 4, p. 11. https://doi.org/10.1038/nri1255

    Article  CAS  Google Scholar 

  2. Cui, S.-F., Ren, Yu., Zhang, S.-L., Peng, X.-M., Damu, G.L.V., Geng, R.-X., and Zhou, C.-H., Bioorg. Med. Chem. Lett., 2013, vol. 23, p. 3267. https://doi.org/10.1016/j.bmcl.2013.03.118

    Article  CAS  PubMed  Google Scholar 

  3. Domagk, G., Dtsch. Med. Wochenschr. J., 1935, vol. 61, p. 829. https://doi.org/10.1055/S-0028-1129654

    Article  CAS  Google Scholar 

  4. Kwasniewska, D., Chen, Y.-L., and Wieczorek, D., Pathogens, 2020, vol. 9, p. 459. https://doi.org/10.3390/pathogens9060459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Morandini, A., Leonetti, B., Riello, P., Sole, R., Gatto, V., Caligiuri, I., Rizzolio, F., and Beghetto, V., ChemMedChem., 2021, vol. 16, p. 3172. https://doi.org/10.1002/cmdc.202100409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sapozhnikov, S.V., Sabirova, A.E., Shtyrlin, N.V., Druk, A.Y., Agafonova, M.N., Chirkova, E.V., Kazakova, R.R., Grishaev, D.Y., Nikishova, T.V., Krylova, E.S., Nikitina, E.V., Kayumov, A.R., and Shtyrlin, Y.G., Eur. J. Med. Chem., 2021, vol. 211, p. 113100. https://doi.org/10.1016/j.ejmech.2020.113100

    Article  CAS  PubMed  Google Scholar 

  7. Mechken, K.A., Menouar, M., Belkhodja, M., and Saidi-Besbes, S., J. Mol. Liq., 2021, vol. 338, p. 116775. https://doi.org/10.1016/j.molliq.2021.116775

    Article  CAS  Google Scholar 

  8. Fanfoni, L., Marsich, E., Turco, G., Breschi, L., and Cadenaro, L., Acta Biomater., 2021, vol. 129, p. 138. https://doi.org/10.1016/j.actbio.2021.05.012

    Article  CAS  PubMed  Google Scholar 

  9. Badura, A., Krysinski, J., Nowaczyk, A., and Bucinski, A., Arab. J. Chem., 2021, vol. 14, p. 103233. https://doi.org/10.1016/j.arabjc.2021.103233

    Article  CAS  Google Scholar 

  10. Pacios, O., Blasco, L., Bleriot, I., Fernandez-Garcia, L., Bardanca, M.G., Ambroa, A., Lopez, M., Bou, G., and Tomas, M., Antibiotics, 2020, vol. 9, p. 65. https://doi.org/10.3390/antibiotics9020065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Salajkova, S., Benkova, M., Marek, J., Sleha, R., Prchal, L., Malinak, D., Dolezal, R., Sepcic, K., Gunde-Cimerman, N., Kuca, K., and Soukup, O., Molecules, 2020, vol. 25, p. 2254. https://doi.org/10.3390/molecules25092254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gaineev, A.M., Galkina, I.V., Davletshin, R.R., Davletshina, N.V., Kuznetsov, N.O., Grishaev, D.Yu., Shulayeva, M.P., and Pozdeev, O.K., Russ. J. Gen. Chem., vol. 92, p. 1208. https://doi.org/10.1134/S1070363222070052

  13. Davletshin, R.R., Gayneev, A.M., Ermakova, E.A., Davletshina, N.V., Galkina, I.V., Ivshin, K.A., Shulaeva, M.P., and Pozdeev, O.K., Mendeleev Commun., 2022, vol. 32, p. 180. https://doi.org/10.1016/j.mencom.2022.03.009

    Article  CAS  Google Scholar 

  14. Gayneev, A., Davletshin, R., Galkina, I., Davletshina, N., Sedov, A., Mirkhuzina, M., Kuchaev, E., and Islamov, D., Phosphorus, Sulfur, Silicon, Relat. Elem., 2022, vol. 197, 6 p. 54. https://doi.org/10.1080/10426507.2021.2021527

    Article  CAS  Google Scholar 

  15. Davletshin, R.R., Gayneev, A.M., Davletshina, N.V., Galkina, I.V., Ivshin, K.A., and Shulaeva, M.P. Russ. J. Org. Chem., 2022, vol. 58, p. 1093. https://doi.org/10.1134/S1070428022080048

    Article  CAS  Google Scholar 

Download references

Funding

This paper has been supported by the Kazan Federal University Strategic Academic Leadership Program (“PRIORITY-2030”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Gayneev.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated from Zhurnal Organicheskoi Khimii, 2023, Vol. 59, No. 5, pp. 672–678 https://doi.org/10.31857/S0514749223050154.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gayneev, A.M., Davletshin, R.R., Galkina, I.V. et al. Synthesis and Biological Activity of Phosphorylated Quaternary Ammonium Salts. Russ J Org Chem 59, 840–845 (2023). https://doi.org/10.1134/S1070428023050159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428023050159

Keywords:

Navigation