Skip to main content
Log in

Straightforward Synthesis of 6-Aryl-2-azido-4-(trifluoromethyl)­pyrimidines and Their Regioselective Copper-Catalyzed Click Cycloaddition to 6-Aryl-2-(4-phenyl-1H-1,2,3-triazol-1-yl)-4-(trifluoromethyl)pyrimidines

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

A straightforward one-pot synthesis of 6-aryl-2-azido-4-(trifluoromethyl)pyrimidine derivatives 3 by the [3+3] cyclocondensation of 1,1,1-trifluoro-4-methoxybut-3-en-2-ones [1, F3CC(O)CH=C(R1)OMe, where R1 = Ph (a), 3,5,5,6,8,8-hexamethyl-5,6,7,8-tetrahydronaphthalen-2-yl (b), 4-PhC6H4 (c), 4-FC6H4 (d), furan-2-yl (e), thiophen-2-yl (f)] with 2-aminotetrazole monohydrate (2) under basic conditions is described. Tetrazolo[1,5-a]pyrimidine is the most probable intermediate product in the reaction, though it has not been identified. Copper-catalyzed click reaction of 3 with phenylacetylene (4) afforded 6-aryl-2-(4-phenyl-1H-1,2,3-triazol-1-yl)-4-(trifluoromethyl)pyrimidines 5. All products were characterized using multinuclear 1H, 13C, and 19F NMR, IR spectroscopy, and electrospray ionization high-resolution mass spectrometry (HRMS). The structures of 2-azido-4-phenyl-6-(trifluoromethyl)pyrimidine (3a), 6-(furan-2-yl)-2-(4-phenyl-1H-1,2,3-triazol-1-yl)-4-(trifluoromethyl)pyrimidine (5e), and 2-(4-phenyl-1H-1,2,3-triazol-1-yl)-6-(thiophen-2-yl)-4-(trifluoro­methyl)pyrimidine (5f) have been determined using single-crystal X-ray diffraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Fig. 1.
Scheme
Scheme
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Walsh, C.T., Tetrahedron Lett., 2015, vol. 56, p. 3075. https://doi.org/10.1016/j.tetlet.2014.11.046

    Article  CAS  Google Scholar 

  2. Vitaku, E., Smith, D.T., and Njardarson, J.T., J. Med. Chem., 2014, vol. 57, p. 10257. https://doi.org/10.1021/jm501100b

    Article  CAS  PubMed  Google Scholar 

  3. Wang, T., Zhang, N., Bai, W., and Bao, Y., Polym. Chem., 2020, vol. 11, p. 3095. https://doi.org/10.1039/D0PY00336K

    Article  CAS  Google Scholar 

  4. Kerru, N., Gummidi, L., Maddila, S., Gangu, K.K., and Jonnalagadda, S.B., Molecules, 2020, vol. 25, article no. 1909. https://doi.org/10.3390/molecules25081909

  5. Tigreros, A. and Portilla, J., RSC Adv., 2020, vol. 10, p. 19693. https://doi.org/10.1039/D0RA02394A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kun, S., Bokor, E., Sipos, A., Docsa, T., and Somsák, L., Molecules, 2018, vol. 23, article no. 666. https://doi.org/10.3390/molecules23030666

  7. Reddy, G.S., Anebouselvy, K., and Ramachary, D.B., Chem. Asian J., 2020, vol. 15, p. 2960. https://doi.org/10.1002/asia.202000731

    Article  CAS  Google Scholar 

  8. Pinheiro, S., Pinheiro, E.M.C., Muri, E.M.F., Pessoa, J.C., Cardorini, M.C., and Greco, S.J., Med. Chem. Res., 2020, vol. 29, p. 1751. https://doi.org/10.1007/s00044-020-02609-1

    Article  CAS  Google Scholar 

  9. Santoso, K.T., Brett, M.W., Cheung, C.-Y., Cook, G.M., Stocker, B.L., and Timmer, M.S.M., ChemistrySelect, 2020, vol. 5, p. 4347. https://doi.org/10.1002/slct.202000799

    Article  CAS  Google Scholar 

  10. Mallo-Abreu, A., Píetro-Díaz, R., Jespers, W., Azuaje, J., Majellaro, M., Velando, C., García-Mera, X., Caamaño, O., Brea, J., Loza, M.I., Gutiérrez-deTerán, H., and Sotelo, E., J. Med. Chem., 2020, vol. 63, p. 7721. https://doi.org/10.1021/acs.jmedchem.0c00564

    Article  CAS  PubMed  Google Scholar 

  11. Kaur, R., Kaur, P., Sharma, S., Singh, G., Mehndiratta, S., Bedi, P.M.S., and Nepali, K., Anticancer Drug Discovery, 2015, vol. 10, p. 23. https://doi.org/10.2174/1574892809666140917104502

    Article  CAS  Google Scholar 

  12. Kim, H., You, G.R., Park, G.J., Choi, J.Y., Noh, I., Kim, Y., Kim, S.J., Kim, C., and Harrison, R.G., Dyes Pigm., 2015, vol. 113, p. 723. https://doi.org/10.1016/j.dyepig.2014.10.006

    Article  CAS  Google Scholar 

  13. Singh, P., Singh, J., Pant, G.J., and Rawat, M.S.M., Anti-Cancer Agents Med. Chem., 2018, vol. 18, p. 1366. https://doi.org/10.2174/1871520618666180313153407

    Article  CAS  Google Scholar 

  14. Liu, C., Gao, H., Li, T., Xiao, Y., and Cheng, X., J. Mol. Struct., 2019, vol. 1193, p. 294. https://doi.org/10.1016/j.molstruc.2019.05.038

    Article  CAS  Google Scholar 

  15. Tan, X., Kong, L., Dai, H., Cheng, X., Liu, F., and Tschierske, C., Chem. Eur. J., 2013, vol. 191, p. 16303. https://doi.org/10.1002/chem.201301538

    Article  CAS  Google Scholar 

  16. Andreeva, O.V., Garifullin, B.F., Zarubaev, V.V., Slita, A.V., Yesaulkova, I.L., Saifina, L.F., Shula­eva, M.M., Belenok, M.G., Semenov, V.E., and Kataev, V.E., Mol. Diversity, 2021, vol. 25, p. 473. https://doi.org/10.1007/s11030-020-10141-y

    Article  CAS  Google Scholar 

  17. Boratynski, P.J., Galezowska, J., Turkowiak, K., Anisiewicz, A., Kowalczyk, R., and Wietrzyk, J., ChemistrySelect, 2018, vol. 32, p. 9368. https://doi.org/10.1002/slct.201801810

    Article  CAS  Google Scholar 

  18. Wang, L., Liu, X., Duan, Y., Li, X., Zhao, B., Wang, C., Xiao, Z., Zheng, P., Tang, Q., and Zhu, W., Chem. Biol. Drug Des., 2018, vol. 92, p. 1301. https://doi.org/10.1111/cbdd.13192

    Article  CAS  PubMed  Google Scholar 

  19. Santosh, R., Selvan, M.K., Kanekar, S.U., and Nagajara, G.K., ChemistrySelect, 2018, vol. 3, p. 6338. https://doi.org/10.1002/slct.201800905

    Article  CAS  Google Scholar 

  20. Danilkina, N.A., Govid, A.I., and Balova, I.A., Synthesis, 2020, vol. 52, p. 1874. https://doi.org/10.1055/s-0039-1690858

    Article  CAS  Google Scholar 

  21. Huo, J., Lin, C., and Liang, J., React. Funct. Polym., 2020, vol. 152, article ID 104531. https://doi.org/10.1016/j.reactfunctpolym.2020.104531

  22. Neto, J.S.S. and Zeni, G., Coord. Chem. Rev. 2020, vol. 409, article ID 213217. https://doi.org/10.1016/j.ccr.2020.213217

  23. Malik, M.S., Ahmed, S.A., Althagafi, I.I., Ansari, M.A., and Kamal, A., RSC Med. Chem., 2020, vol. 11, p. 327. https://doi.org/10.1039/C9MD00458K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pleshkova, N.V., Nikolaenkova, E.B., Krivopalov, V.P., and Mamatyuk, V.I., Russ. Chem. Bull., Int. Ed., 2017, vol. 66, p. 2095. https://doi.org/10.1007/s11172-017-1986-2

    Article  CAS  Google Scholar 

  25. Nikolaenkova, E.B., Aleksandrova, N.V., Mama­tyuk, V.I., and Krivopalov, V.P., Russ. Chem. Bull., Int. Ed., 2018, vol. 67, p. 893. https://doi.org/10.1007/s11172-018-2154-z

    Article  CAS  Google Scholar 

  26. Scapin, E., Salbego, P.R.S., Bender, C.R., Meyer, A.R., Pagliarini, A.B., Orlando, T., Zimmer, G.C., Frizzo, C.P., Bonacorso, H.G., Zanatta, N., and Martins, M.A.P., Beilstein J. Org. Chem., 2017, vol. 13, p. 2396. https://doi.org/10.3762/bjoc.13.237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Scapin, E., Frizzo, C.P., Rodrigues, L.V., Zimmer, G.C., Vaucher, R.A., Sagrillo, M.R., Giongo, J.L., Afon­so, C.A.M., Rijo, P., Zanatta, N., Bonacorso, H.G., and Martins, M.A.P., Med. Chem. Res., 2017, vol. 26, p. 640. https://doi.org/10.1007/s00044-017-1783-3

    Article  CAS  Google Scholar 

  28. Bareño, V.D.O., Santos, D.S., Frigo, L.M., de Mello, D.L., Malavolta, J.L., Blanco, R.F., Pizzuti, L., Flores, D.C., and Flores, A.F.C., J. Braz. Chem. Soc., 2020, vol. 31, p. 244. https://doi.org/10.21577/0103-5053.20190160

    Article  CAS  Google Scholar 

  29. Liu, C., Cui, Z., Yan, X., Qi, Z., Ji, M., and Li, X., Molecules, 2016, vol. 21, article no. 828. https://doi.org/10.3390/molecules21070828

  30. Cartwright, I.L., Hutchinson, D.W., and Arm­strong, V.W., Nucleic Acids Res., 1976, vol. 3, p. 2331. https://doi.org/10.1093/nar/3.9.2331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Flores, A.F.C., Peres, R.L., Piovesan, L.A., Flores, D.C., Bonacorso, H.G., and Martins, M.A.P., J. Braz. Chem. Soc., 2006, vol. 17, p. 79. https://doi.org/10.1590/S0103-50532006000100012

    Article  CAS  Google Scholar 

  32. Liang, L. and Astruc, D., Coord. Chem. Rev., 2011, vol. 255, p. 2933. https://doi.org/10.1016/j.ccr.2011.06.028

    Article  CAS  Google Scholar 

  33. Sheldrick, G.M., Acta Crystallogr., Sect. A, 2008, vol. 64, p. 112. https://doi.org/10.1107/S0108767307043930

    Article  CAS  Google Scholar 

  34. Sheldrick, G.M., Acta Crystallogr., Sect. C, 2015, vol. 71, p. 3. https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  35. Pennington, W.T., J. Appl. Crystallogr., 1999, vol. 32, p. 1028. https://doi.org/10.1107/S0021889899011486

    Article  CAS  Google Scholar 

Download references

Funding

The authors are grateful for financial support from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Researcher grant 310209/2019-6) and Programa de Apoio à Pós-graduação CAPES (PROAP/CAPES/PPGQTA-FURG). Fellowships from CAPES (M.A. Delevati, F.P. Ludwig) are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. C. Flores.

Ethics declarations

The authors declare no conflict of interest.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ludwig, F.P., Delevati, M.A., Cargnelutti, R. et al. Straightforward Synthesis of 6-Aryl-2-azido-4-(trifluoromethyl)­pyrimidines and Their Regioselective Copper-Catalyzed Click Cycloaddition to 6-Aryl-2-(4-phenyl-1H-1,2,3-triazol-1-yl)-4-(trifluoromethyl)pyrimidines. Russ J Org Chem 59, 164–173 (2023). https://doi.org/10.1134/S1070428023010189

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428023010189

Keywords:

Navigation