Skip to main content
Log in

Synthesis of Substituted Quinolines through Bismuth-Catalyzed Cyclization

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

The synthesis of quinoline derivatives through bismuth-catalyzed cyclization of phenylacetylene with ethyl 2-(arylimino)acetates has been reported. The excellence of this method is that the reaction is carried out at room temperature, and the catalyst is exceptionally productive, low toxic, and very cheap. The mild reaction conditions added an extraordinary benefit and made it attractive in economic and environmental aspects. The target products were isolated in up to 89% yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Fig. 1.
Fig. 2.

REFERENCES

  1. Michael, J.P., Nat. Prod. Rep., 2008, vol. 25, p.166. https://doi.org/10.1039/B612168N

    Article  CAS  PubMed  Google Scholar 

  2. Solomon, R.V. and Lee, H., Curr. Med. Chem., 2011, vol. 18, p. 1488. https://doi.org/10.2174/092986711795328382

    Article  CAS  PubMed  Google Scholar 

  3. Bax, B.D., Chan, P.F., Eggleston, D.S., Fosberry, A., Gentry, D.R., Gorrec, F., Giordano, I., Hann, M.M., Hennessy, A., Hibbs, M., Huang, J., Jones, E., Jones, J., Brown, K.K., Lewis, C.J., May, E.W., Saunders, M.R., Singh, O., Spitzfaden, C.E., Shen, C., Shillings, A., Theobald, A.J., Wohlkonig, A., Pearson, N.D., and Gwynn, M.N., Nature, 2010, vol. 466, no. 7309, p. 935. https://doi.org/10.1038/nature09197

    Article  PubMed  Google Scholar 

  4. Carrigan, C.N., Esslinger, C.S., Bartlett, R.D., Bridges, R.J., and Thompson, C.M., Bioorg. Med. Chem. Lett., 1999, vol. 9, p. 2607. https://doi.org/10.1016/s0960-894x(99)00444-8

    Article  CAS  PubMed  Google Scholar 

  5. Carrigan, C.N., Bartlett, R.D., Esslinger, C.S., Cybul­ski, K.A., Tongcharoensirikul, P., Bridges, R.J., and Thompson, C.M., J. Med. Chem., 2002, vol. 45, p. 2260. https://doi.org/10.1021/jm010261z

    Article  CAS  PubMed  Google Scholar 

  6. Horchler, C.L., McCauley, J.P., Hall, J.E., Snyder, D.H., Moore, W.C., Hudzik, T.J., and Chapdelaine, M.J., Bioorg. Med. Chem., 2007, vol. 15, p. 939. https://doi.org/10.1016/j.bmc.2006.10.037

    Article  CAS  PubMed  Google Scholar 

  7. Zhu, Y.F., Wang, X.C., Connors, P., Wilcoxen, K., Gao, Y.H., Gross, R., Strack, N., Gross, T., Mc­Carthy, J.R., Xie, Q., Ling, N., and Chen, C., Bioorg. Med. Chem. Lett., 2003, vol. 13, p. 1931. https://doi.org/10.1016/S0960-894X(03)00322-6

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, Y. and Sigman, M.S., J. Am. Chem. Soc., 2007, vol. 129, p. 3076. https://doi.org/10.1021/ja070263u

    Article  CAS  PubMed  Google Scholar 

  9. Laras, Y., Hugues, V., Chandrasekaran, Y., Blanchard-Desce, M., Acher, F.C., and Pietrancosta, N., J. Org. Chem., 2012, vol. 77, p. 8294. https://doi.org/10.1021/jo301652j

    Article  CAS  PubMed  Google Scholar 

  10. Saburi, H., Tanaka, S., and Kitamura, M., Angew. Chem., Int. Ed., 2005, vol. 44, p. 1730. https://doi.org/10.1002/anie.200462513

    Article  CAS  Google Scholar 

  11. Madapa, S., Tusi, Z., and Batra, S., Curr. Org. Chem., 2008, vol. 12, p. 1116. https://doi.org/10.2174/138527208785740300

    Article  CAS  Google Scholar 

  12. Jia, X.-D., Peng, F.-F., Qing, C., Huo, C.-D., and Wang, X.-C., Org. Lett., 2012, vol. 14, p. 4030. https://doi.org/10.1021/ol301909g

    Article  CAS  PubMed  Google Scholar 

  13. Huo, C., Yuan, Y., Wu, M., Jia, X., Wang, X., Chen, F., and Tang, J., Angew. Chem., Int. Ed., 2014, vol. 53, p. 13544. https://doi.org/10.1002/anie.201406905

    Article  CAS  Google Scholar 

  14. Wang, C., Ding, Q., Zheng, Q., Bao, P., and Peng, Y., Tetrahedron, 2018, vol. 74, no. 2, p. 348. https://doi.org/10.1016/j.tet.2017.12.004

    Article  CAS  Google Scholar 

  15. Ni, M., Zhang, Y., Gong, T., and Feng, B., Adv. Synth. Catal., 2017, vol. 359, no. 5, p. 824. https://doi.org/10.1002/adsc.201601066

    Article  CAS  Google Scholar 

  16. Leonard, N.M., Wieland, L.C., and Mohan, R.S., Tetrahedron, 2002, vol. 58, p. 8373. https://doi.org/10.1016/S0040-4020(02)01000-1

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the Central Instrumentation Facility (CIF, Pondicherry University) for the NMR spectroscopic facility and DST-FIST for the ESI-MS and single-crystal XRD facility. M.A.B.R. acknowledges Pondicherry University for providing University Research Fellowship.

Funding

T.S. thanks the Science and Engineering Research Board, Government of India, for financial support (file no. EEQ/2018/000428).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Swu.

Ethics declarations

The authors declare no conflict of interest.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riyaz, M.A.B., Nimbus, L.C., Rajasekhar, B. et al. Synthesis of Substituted Quinolines through Bismuth-Catalyzed Cyclization. Russ J Org Chem 59, 150–157 (2023). https://doi.org/10.1134/S1070428023010165

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428023010165

Keywords:

Navigation