Skip to main content
Log in

Synthesis of New Cyclohexenone Derivatives Using Potassium Phthalimide as a Green Organocatalyst. One-Pot Microwave-Assisted Synthesis and Antimicrobial Evaluation

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

A direct one-pot three-component reaction of 4-acetyl-N-benzylbenzamide, ethyl acetoacetate or methyl acetoacetate, and aromatic aldehydes under microwave irradiation afforded a series of new cyclo­hexenone derivatives. The proposed procedure has the advantages of one-pot reaction, high efficiency, short reaction time, and simple workup. The antimicrobial activity of the obtained cyclohexenone derivatives was tested against a variety of bacteria (E. coli, S. aureus, S. pyogenes, P. aeruginosa) and fungi (C. albicans, A. niger, A. clavatus).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Fig. 1.
Scheme

REFERENCES

  1. Chai, G.-L., Sun, A.-Q., Zhai, D., Wang, J., Deng, W.-Q., Wong, H.N., and Chang, J., Org. Lett., 2019, vol. 21, p. 5040. https://doi.org/10.1021/acs.orglett.9b01637

    Article  CAS  PubMed  Google Scholar 

  2. Poplata, S. and Bach, T., J. Am. Chem. Soc., 2018, vol. 140, p. 3228. https://doi.org/10.1021/jacs.8b01011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Parveen, N., Saha, R., and Sekar, G., Adv. Synth. Catal., 2017, vol. 359, p. 3741. https://doi.org/10.1002/adsc.201700823

    Article  CAS  Google Scholar 

  4. Pun, D., Diao, T., and Stahl, S.S., J. Am. Chem. Soc., 2013, vol. 135, p. 8205. https://doi.org/10.1021/ja403165u

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ganji, S., Bukya, P., Vakati, V., Rao, K.S.R., and Burri, D.R., Catal. Sci. Technol., 2013, vol. 3, p. 409. https://doi.org/10.1039/C2CY20627G

  6. Zhou, X., Xia, J., Zheng, G., Kong, L., and Li, X., Angew. Chem., Int. Ed., 2018, vol. 57, p. 6681. https://doi.org/10.1002/anie.201803347

    Article  CAS  Google Scholar 

  7. Wen, Z.-K., Song, T.-T., Liu, Y.-F., and Chao, J.-B., Chem. Commun., 2018, vol. 54, p. 3668. https://doi.org/10.1039/C8CC01059E

    Article  CAS  Google Scholar 

  8. Ohshima, T., Tadaoka, H., Hori, K., Sayo, N., and Mashima, K., Chem. Eur. J., 2008, vol. 14, p. 2060. https://doi.org/10.1002/chem.200701505

    Article  CAS  PubMed  Google Scholar 

  9. Kilic, H., Bayindir, S., Erdogan, E., Cinar, S.A., Konuklar, F., Bali, S., Saracoglu, N., and Aviyente, V., New J. Chem., 2017, vol. 41, p. 9674. https://doi.org/10.1039/C7NJ01987D

    Article  CAS  Google Scholar 

  10. Chunyu, W.-X., Zhao, J.-Y., Ding, Z.-G., Han, X.-L., Wang, Y.-X., Ding, J.-H., Wang, F., Li, M.-G., and Wen, M.-L., Nat. Prod. Res., 2018, vol. 33, p. 113. https://doi.org/10.1080/14786419.2018.1431636

    Article  CAS  PubMed  Google Scholar 

  11. Wisetsai, A., Lekphrom, R., and Schevenels, F.T., Nat. Prod. Res., 2018, vol. 32, p. 2499. https://doi.org/10.1080/14786419.2017.1423299

    Article  CAS  PubMed  Google Scholar 

  12. Li, X., Jiang, Y., Liu, J., Han, L., Jiang, C., and Huang, X., Chem. Nat. Compd., 2015, vol. 51, p. 1074. https://doi.org/10.1007/s10600-015-1495-1

    Article  CAS  Google Scholar 

  13. Sommart, U., Rukachaisirikul, V., Sukpondma, Y., Phongpaichit, S., Towatana, N.H., Graidist, P., Hajiwangoh, Z., and Sakayaroj, J., Arch. Pharmacal Res., 2009, vol. 32, p. 1227. https://doi.org/10.1007/s12272-009-1907-5

    Article  CAS  Google Scholar 

  14. Yamamoto, Y., Mori, N., Watanabe, H., and Taki­kawa, H., Tetrahedron Lett., 2018, vol. 59, p. 3503. https://doi.org/10.1016/j.tetlet.2018.08.027

    Article  CAS  Google Scholar 

  15. Vulovic, B., Kolarski, D., Bihelovic, F., Matovic, R., Gruden, M., and Saicic, R.N., Org. Lett., 2016, vol. 18, p. 3886. https://doi.org/10.1021/acs.orglett.6b01898

    Article  CAS  PubMed  Google Scholar 

  16. Zhi, C., Wang, J., Luo, B., Li, X., Cao, X., Pan, Y., and Gu, H., RSC Adv., 2014, vol. 4, p. 15036. https://doi.org/10.1039/c4ra01231c

    Article  CAS  Google Scholar 

  17. Badshah, A., Nawaz, S., Nazar, M.F., Shah, S.S., and Hasan, A., J. Fluoresc., 2010, vol. 20, p. 1049. https://doi.org/10.1007/s10895-010-0657-6

    Article  CAS  PubMed  Google Scholar 

  18. Padmavathi, V., Sharmila, K., Reddy, A.S., and Reddy, D.B., Indian J. Chem., Sect. B, 2001, vol. 40, p. 11. http://nopr.niscpr.res.in/handle/123456789/22142

    Google Scholar 

  19. Fujioka, H., Kotoku, N., Sawama, Y., Nagatomi, Y., and Kita, Y., Tetrahedron Lett., 2002, vol. 43, p. 4825. https://doi.org/10.1016/S0040-4039(02)00916-4

    Article  CAS  Google Scholar 

  20. Kanagarajan, V., Thanusu, J., and Gopalakrishnan, M., J. Enzyme Inhib. Med. Chem., 2011, vol. 26, p. 56. https://doi.org/10.3109/14756361003689856

    Article  CAS  PubMed  Google Scholar 

  21. Vyas, D., Tala, S., Akbari, J., Dhaduk, M., and Joshi, H., Indian J. Chem., Sect. B, 2009, vol. 48, p. 833. http://nopr.niscpr.res.in/handle/123456789/4548

    Google Scholar 

  22. Popat, K., Nimavat, K., Vasoya, S., and Joshi, H., Ind. J. Chem., Sect. B, 2003, vol. 42, p. 1497. http://nopr.niscpr.res.in/handle/123456789/21617

    Google Scholar 

  23. Nazar, M.F., Abdullah, M.I., Badshah, A., Mahmood, A., Rana, U.A., and Khan, S.U.-D., J. Mol. Struct., 2015, vol. 1086, p. 8. https://doi.org/10.1016/j.molstruc.2014.12.090

    Article  CAS  Google Scholar 

  24. Liu, Z.-Q., Curr. Org. Chem., 2018, vol. 22, p. 1347. https://doi.org/10.2174/1385272822666180511122631

  25. Gein, V., Nosova, N., Potemkin, K., Aliev, Z., and Kriven’ko, A., Russ. J. Org. Chem., 2005, vol. 41, p. 1016. https://doi.org/10.1007/s11178-005-0287-7

    Article  CAS  Google Scholar 

  26. Gein, V., Odegova, T., Yankin, A., and Nosova, N., Russ. J. Gen. Chem., 2015, vol. 85, p. 46. https://doi.org/10.1134/s1070363215010089

    Article  CAS  Google Scholar 

  27. Gein, V., Levandovskaya, E., Nosova, N., Vakhrin, M., Kriven’ko, A., and Aliev, Z., Russ. J. Org. Chem., 2007, vol. 43, p. 1096. https://doi.org/10.1134/S1070428007070275

    Article  CAS  Google Scholar 

  28. Gein, V., Yankin, A., Nosova, N., Dmitriev, M., and Nasakin, O., Russ. J. Gen. Chem., 2016, vol. 86, p. 58. https://doi.org/10.1134/s1070363216010114

    Article  CAS  Google Scholar 

  29. Mousavi, M.R., Maghsoodlou, M.T., and Habibi-Khorassani, S.M., Mol. Diversity, 2014, vol. 18, p. 821. https://doi.org/10.1007/s11030-014-9541-7

    Article  CAS  Google Scholar 

  30. Kamanna, K. and Khatavi, S.Y., Curr. Microwave Chem., 2020, vol. 7, p. 23. https://doi.org/10.2174/2213346107666200218124147

    Article  CAS  Google Scholar 

  31. Domling, A., Wang, W., and Wang, K., Chem. Rev., 2012, vol. 112, p. 3083. https://doi.org/10.1021/cr100233r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Singh, R.K., Dhiman, A., Chaudhary, S., Prasad, D.N., and Kumar, S., Curr. Org. Chem., 2020, vol. 24, p. 487. https://doi.org/10.2174/1385272822666200217100344

    Article  CAS  Google Scholar 

  33. Cioc, R.C., Ruijter, E., and Orru, R.V., Green Chem., 2014, vol. 16, p. 2958. https://doi.org/10.1039/C4GC00013G

    Article  CAS  Google Scholar 

  34. Lipshutz, B.H., Ghorai, S., and Cortes‐Clerget, M., Chem. Eur. J., 2018, vol. 24, p. 6672. https://doi.org/10.1002/chem.201705499

    Article  CAS  PubMed  Google Scholar 

  35. Sheldon, R.A., Curr. Opin. Green Sustainable Chem., 2019, vol. 18, p. 13. https://doi.org/10.1016/j.cogsc.2018.11.006

    Article  Google Scholar 

  36. Kitanosono, T., Masuda, K., Xu, P., and Kobayashi, S., Chem. Rev. 2018, vol. 118, p. 679. https://doi.org/10.1021/acs.chemrev.7b00417

  37. Vekariya, R.H. and Patel, H.D., Indian J. Chem., Sect. B, 2017, vol. 56, p. 890. http://nopr.niscair.res.in/handle/123456789/42584

    Google Scholar 

  38. Vekariya, R.H., Patel, K.D., and Patel, H.D., Indian J. Chem., Sect. B, 2018, vol. 57, p. 576. http://nopr.niscair.res.in/handle/123456789/44177

    Google Scholar 

  39. Brahmachari, G. and Banerjee, B., ACS Sustainable Chem. Eng., 2014, vol. 2, p. 411. https://doi.org/10.1021/sc400312n

    Article  CAS  Google Scholar 

  40. Hasaninejed, A., Kazerooni, M.R., and Zare, A., ACS Sustainable Chem. Eng., 2013, vol. 1, p. 679. https://doi.org/10.1021/sc400081c

    Article  CAS  Google Scholar 

  41. Mariotti, N., Bonomo, M., Fagiolari, L., Barbero, N., Gerbaldi, C., Bella, F., and Barolo, C., Green Chem., 2020, vol. 22, p. 7168. https://doi.org/10.1039/D0GC01148G

    Article  CAS  Google Scholar 

  42. Mukherjee, N., Maity, P., and Ranu, B.C., Green Syn­thetic Approaches for Biologically Relevant Hetero­cycles, Brahmachari, G., Ed., Elsevier, 2021, 2nd ed., p. 167. https://doi.org/10.1016/B978-0-12-820586-0.00007-8

  43. Sahoo, B.M. and Banik, B.K., Green Approaches in Medicinal Chemistry for Sustainable Drug Design, Banik, B.K., Ed., Amsterdam: Elsevier, 2020, chap. 14, p. 523. https://doi.org/10.1016/B978-0-12-817592-7.00014-9

  44. Lambat, T.L., Chopra, P.K.P., and Mahmood, S.H., Curr. Org. Chem., 2020, vol. 24, p. 2527. https://doi.org/10.2174/1385272824999200622114919

    Article  CAS  Google Scholar 

  45. Nain, S., Singh, R., and Ravichandran, S., Adv. J. Chem., Sect. A, 2019, vol. 2, p. 94. https://doi.org/10.29088/SAMI/AJCA.2019.2.94104

    Article  CAS  Google Scholar 

  46. Borgaonkar, V.V., Green Chemistry and Sustainable Technology. Biological, Pharmaceutical, and Macro­molec­ular Systems, Dake, S.A., Shinde, R.S., Ameta, S.C., and Haghi, A.K., Eds., Apple Academic Press, 2020, p. 235. https://www.appleacademicpress.com/green-chemistry-and-sustainable-technology-biological-pharmaceutical-and-macromolecular-systems-/9781771888622

  47. Vekariya, R.H., Patel, K.D., Vekariya, M.K., Praja­pati, N.P., Rajani, D.P., Rajani, S.D., and Patel, H.D., Res. Chem. Intermed., 2017, vol. 43, p. 6207. https://doi.org/10.1007/s11164-017-2985-5

    Article  CAS  Google Scholar 

  48. Gajjar, J.A., Vekariya, R.H., Sharma, V.S., Kher, S.N., Rajani, D.P., and Parekh, H.M., Mol. Cryst. Liq. Cryst., 2021, vol. 715, p. 37. https://doi.org/10.1080/15421406.2020.1856615

    Article  CAS  Google Scholar 

  49. Vekariya, R.H., Patel, K.D., Prajapati, N.P., Patel, H.D., Curr. Microwave Chem., 2017, vol. 4, p. 122. https://doi.org/10.2174/2213335603666160408162601

    Article  CAS  Google Scholar 

  50. Xiang, S.-H. and Tan, B., Nat. Commun., 2020, vol. 11, article no. 3786. https://doi.org/10.1038/s41467-020-17580-z

  51. Sahoo, B.M., Banik, B.K., Curr. Organocatal., 2019, vol. 6, p. 92. https://doi.org/10.2174/2213337206666190405144423

    Article  CAS  Google Scholar 

  52. Shokouhimehr, M., Asl, M.S., and Mazinani, B., Res. Chem. Intermed., 2018, vol. 44, p. 1617. https://doi.org/10.1007/s11164-017-3188-9

    Article  CAS  Google Scholar 

  53. Li, X., Zhang, B., Fang, Y., Sun, W., Qi, Z., Pei, Y., Qi, S., Yuan, P., Luan, X., and Goh, T.W., Chem. Eur. J., 2017, vol. 23, p. 4266. https://doi.org/10.1002/chem.201605852

    Article  CAS  PubMed  Google Scholar 

  54. Figueras, F., Lakshmi Kantam, M., and Manoranjan Choudary, B., Curr. Org. Chem., 2006, vol. 10, p. 1627. https://doi.org/10.2174/138527206778249658

    Article  CAS  Google Scholar 

  55. Smith, M.B., March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, Hoboken NJ: Wiley, 2020, 8th ed.

  56. Singh, P., Kaur, S., Kumar, V., Bedi, P., Mahajan, M., Sehar, I., Pal, H.C., and Saxena, A.K., Bioorg. Med. Chem. Lett., 2011, vol. 21, p. 3017. https://doi.org/10.1016/j.bmcl.2011.03.043

    Article  CAS  PubMed  Google Scholar 

  57. Yu, X. and Zhou, Z., Phosphorus, Sulfur Silicon Relat. Elem., 2018, vol. 193, p. 387. https://doi.org/10.1080/10426507.2018.1424161

    Article  CAS  Google Scholar 

  58. Moghaddam, F.M., Dekamin, M.G., and Koozeh­gari, G.R., Lett. Org. Chem., 2005, vol. 2, p. 734. https://doi.org/10.2174/157017805774717508

    Article  CAS  Google Scholar 

  59. Dekamin, M.G., Sagheb-Asl, S., and NaimiJamal, M.R., Tetrahedron Lett., 2009, vol. 50, p. 4063. https://doi.org/10.1016/j.tetlet.2009.04.090

    Article  CAS  Google Scholar 

  60. Han, L.-L. and Zhou, Z.-Q., J. Mater. Environ. Sci., 2019, vol. 10, p. 182. https://www.jmaterenvironsci.com/Document/vol10/vol10_N2/19-JMES-Han-2019.pdf

    CAS  Google Scholar 

  61. Kiyani, H. and Ghorbani, F., Chem. Pap., 2014, vol. 68, p. 1104. https://doi.org/10.2478/s11696-014-0554-6

    Article  CAS  Google Scholar 

  62. Kiyani, H. and Ghorbani, F., Res. Chem. Intermed., 2015, vol. 41, p. 4031. https://doi.org/10.1007/s11164-013-1508-2

    Article  CAS  Google Scholar 

  63. Kiyani, H. and Ghiasi, M., Chin. Chem. Lett., 2014, vol. 25, p. 313. https://doi.org/10.1016/j.cclet.2013.11.042

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are thankful to the Department of Chemistry, RK University, for providing laboratory facilities for research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Das.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Odiya, S.P., Das, S.P., Boruah, J.J. et al. Synthesis of New Cyclohexenone Derivatives Using Potassium Phthalimide as a Green Organocatalyst. One-Pot Microwave-Assisted Synthesis and Antimicrobial Evaluation. Russ J Org Chem 59, 117–132 (2023). https://doi.org/10.1134/S107042802301013X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107042802301013X

Keywords:

Navigation