Skip to main content
Log in

Synthesis of Dehydroabietane Sulfonamides Containing Amino Acid Ester and Hydrazide Fragments

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

The reaction of 12-(chlorosulfonyl)dehydroabietic acid ethyl ester with methyl esters of amino acids (glycine, methionine, leucine, glutamic acid, tyrosine, proline, and histidine) afforded previously unknown sulfonamides which were selectively converted to amino acid hydrazides without involving the ethyl ester moiety of dehydroabietic acid. In the reaction with glutamic acid dimethyl ester, the corresponding dihydrazide was obtained. 12-(Chlorosulfonyl)dehydroabietic acid ethyl ester reacted with cystine dimethyl ester to give bis-sulfonamide as the only product, while the same reaction carried out in acetone-containing medium was accompanied by cleavage of the cystine S–S bond with the formation of acetone dithioacetal. Treatment of the bis-sulfonamide and thioketal with chlorine dioxide selectively produced the same chlorosulfonyl derivative as a result of oxidation of the disulfide or thioketal moiety

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme

Notes

  1. Chlorine dioxide is a commercial product manufactured by Mondi SLPK, which is used for cellulose bleaching. It is sold in the form of an aqueous solution with a concentration of 7–10 g/L. A so­lution of ClO2 in methylene chloride was prepared by simple extraction, followed by drying of the extract over Na2SO4.

REFERENCES

  1. Gu, W., Miao, T.-T., Hua, D.-W., Jin, X.-Y., Tao, X.-B., Huang, Ch.-B., and Wang, Sh.-F., Bioorg. Med. Chem. Lett., 2017, vol. 27, p. 1296. https://doi.org/10.1016/j.bmcl.2017.01.028

    Article  CAS  PubMed  Google Scholar 

  2. Gonzalez, M.A., Nat. Prod. Rep., 2015, vol. 32, p. 684. https://doi.org/10.1039/C4NP00110A

    Article  CAS  PubMed  Google Scholar 

  3. Gonzalez, M.A., Eur. J. Med. Chem., 2014, vol. 87, p. 834. https://doi.org/10.1016/j.ejmech.2014.10.023

    Article  CAS  PubMed  Google Scholar 

  4. Pertino, M.W., Verdugo, V., Theoduloz, C., and Schmeda-Hirschmann, G., Molecules, 2014, vol. 19, p. 2523. https://doi.org/10.3390/molecules19022523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Huang, X.-Ch., Wang, M., Pan, Y.-M., Yao, G.-Y., Wang, H.-Sh., Tian, X.-Y., Qin, J.-K., and Zhang, Y., Eur. J. Med. Chem., 2013, vol. 69, p. 508. https://doi.org/10.1016/j.ejmech.2013.08.055

    Article  CAS  PubMed  Google Scholar 

  6. Huang, X.-Ch., Jin, L., Wang, M., Liang, D., Chen, Zh.-F., Zhang, Y., Pan, Y.-M., and Wang, H.-Sh., Eur. J. Med. Chem., 2015, vol. 89, p. 370. https://doi.org/10.1016/j.ejmech.2014.10.060

    Article  CAS  PubMed  Google Scholar 

  7. Huang, X., Huang, R., Liao, Zh., Pan, Y., Gou, Sh., and Wang, H., Eur. J. Med. Chem., 2016, vol. 108, p. 381. https://doi.org/10.1016/j.ejmech.2015.12.008

    Article  CAS  PubMed  Google Scholar 

  8. Huang, R.-Zh., Liang, G.-B., Huang, X.-Ch., Zhang, B., Zhou, M.-M., Liao, Zh.-X., and Wang, H.-Sh., Eur. J. Med. Chem., 2017, vol. 138, p. 979. https://doi.org/10.1016/j.ejmech.2017.07.020

    Article  CAS  PubMed  Google Scholar 

  9. Zareef, M., Iqbal, R., Al-Masoudi, N.A., Zaidi, J.H., Arfan, M., and Shahzad, S.A., Phosphorus, Sulfur Silicon Relat. Elem., 2007, vol. 182, p. 281. https://doi.org/10.1080/10426500600919074

    Article  CAS  Google Scholar 

  10. Zareef, M., Iqbal, R., De Dominguez, N.G., Rodrigues, J., Zaidi, J.H., Arfan, M., and Supuran, C.T., J. Enzyme Inhib. Med. Chem., 2007, vol. 22, p. 301. https://doi.org/10.1080/14756360601114569

    Article  CAS  PubMed  Google Scholar 

  11. Izmest’ev, Ye.S., Pestova, S.V., Lezina, O.M., Rubtsova, S.A., and Kutchin, A.V., ChemistrySelect, 2019, vol. 4, p. 11034. https://doi.org/10.1002/slct.201902600

    Article  CAS  Google Scholar 

  12. Pestova, S.V., Petukhov, D.V., Izmest’ev, E.S., and Rubtsova, S.A., Russ. J. Org. Chem., 2022, vol. 58, p. 897. https://doi.org/10.31857/S0514749222080134

    Article  Google Scholar 

  13. Reichardt, C., Solvents and Solvent Effects in Organic Chemistry, Weinheim: VCH, 1988, 2nd ed.4

  14. Li, J. and Sha, Y., Molecules, 2008, vol. 13, p. 1111. https://doi.org/10.3390/molecules13051111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

Spectral and analytical studies were performed using the facilities of the Chemistry joint center, Institute of Chemistry, Komi Scientific Center, Ural Branch, Russian Academy of Sciences.

Funding

This study was financially supported by the Ministry of Science and Higher Education of the Russian Federation (state assignment no. 122040600073-3) and by the world-level scientific and educational center “Russian Arctic: New Materials, Technologies, and Methods of Research.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Izmest’ev.

Ethics declarations

The authors declare the absence of conflict of interest.

Additional information

Translated from Zhurnal Organicheskoi Khimii, 2023, Vol. 59, No. 1, pp. 106–118 https://doi.org/10.31857/S0514749223010093.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izmest’ev, E.S., Petukhov, D.V., Pestova, S.V. et al. Synthesis of Dehydroabietane Sulfonamides Containing Amino Acid Ester and Hydrazide Fragments. Russ J Org Chem 59, 67–77 (2023). https://doi.org/10.1134/S1070428023010074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428023010074

Keywords:

Navigation