Skip to main content
Log in

One-Pot Room-Temperature Protocol for the Synthesis of Pyrazolines Using SnO2 Nanocomposite as Heterogeneous Catalyst

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

An efficient, nano-SnO2-catalyzed one-pot protocol has been developed for the synthesis of pyrazolines from acetophenones, aromatic aldehydes, and phenylhydrazine at room temperature. The catalyst, SnO2 nanocomposite, was prepared at molecular level and characterized by various modern analytical and spectroscopic methods (UV, IR, XRD, SEM, TEM, and SAED). The catalytic efficiency of SnO2 nanocomposite was investigated, and it was found to provide good to excellent yields of pyrazolines within a short time and to retain its activity up to five successive runs under the optimized conditions. Simple workup procedure, high yields, and heterogeneous nature and recyclability of the catalyst, as well as energy saving by performing one-pot reaction at room temperature, are the most attractive benefits of the proposed multicomponent approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Scheme
Scheme
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Beerappa, M. and Shivashankar, K., RSC Adv., 2015, vol. 5, no. 38, p. 30364. https://doi.org/10.1039/C4RA17219A

    Article  CAS  Google Scholar 

  2. Jagadishbabu, N. and Shivashankar, K., RSC Adv., 2015, vol. 5, no. 115, p. 95240. https://doi.org/10.1039/C5RA19595K

    Article  CAS  Google Scholar 

  3. Gu, Y., Green Chem., 2012, vol. 14, p. 2091. https://doi.org/10.1039/C2GC35635J

    Article  CAS  Google Scholar 

  4. Dömling, A. and Ugi, I., Angew. Chem., Int. Ed., 2000, vol. 39, p. 3168. https://doi.org/10.1002/1521-3773(20000915)39:18<3168::AID-ANIE3168>3.0.CO;2-U

    Article  Google Scholar 

  5. Dömling, A., Chem. Rev., 2006, vol. 106, p. 17. https://doi.org/10.1021/cr0505728

    Article  CAS  Google Scholar 

  6. Mathapati, S.R., Swami, M.B., Jadhav, A.H., Ghule, N.V., and Dawle, J.K., Pharma Chem., 2017, vol. 9, no. 6, p. 1. https://www.derpharmachemica.com/pharma-chemica/design-and-synthesis-of-classical-dihydropyrimidone-derivatives-from-azosalicyaldehydes.pdf

    CAS  Google Scholar 

  7. Manouchehr, M. and Roghayeh, H.N., Polycyclic Aromat. Compd., 2021, vol. 41, p. 223. https://doi.org/10.1080/10406638.2019.1584576

    Article  CAS  Google Scholar 

  8. Mathapati, S.R., Sakhare, J.F., Swami, M.B., and Dawle, J.K., Pharma Chem., 2012, vol. 4, p. 2248. https://www.derpharmachemica.com/pharma-chemica/application-of-green-solvent-in-synthesis-of-thiophenytoins-using-aryl-thioureas.pdf

    CAS  Google Scholar 

  9. Sobhi, H.R., Yamini, Y., Esrafili, A., and Adib, M., J. Pharm. Biomed. Anal., 2008, vol. 48, p. 1059. https://doi.org/10.1016/j.jpba.2008.07.029

    Article  CAS  Google Scholar 

  10. Udupi, R.H., Kushnoor, A.S., and Bhat, A.R., Indian J. Heterocycl. Chem., 1998, vol. 8, p. 63. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032265027&partnerID=40&md5=25ef2a13879c862dc56131947351c03c

    CAS  Google Scholar 

  11. Amir, M. and Kumar, S., Indian J. Chem., Sect. B, 2005, vol. 44, p. 2532. http://nopr.niscair.res.in/handle/123456789/9243

    Google Scholar 

  12. Ponnurengam, M.S., Suresh, G., Veluchamy, P., and Doble, M., Chem. Biol. Drug Des., 2010, vol. 76, p. 407. https://doi.org/10.1111/j.1747-0285.2010.01020.x

    Article  CAS  Google Scholar 

  13. Nugent, R.A., Murphy, M., Schlachter, S.T., Dunn, C.J., Smith, R.J., and Staite, L.A., J. Med. Chem., 1993, vol. 36, p. 134. https://doi.org/10.1021/jm00053a017

    Article  CAS  Google Scholar 

  14. Jainey, P.J. and Bhat, I.K., J. Young Pharm., 2012, vol. 4, p. 82. https://doi.org/10.4103/0975-1483.96621

    Article  CAS  Google Scholar 

  15. Fioravanti, R., Desideri, N., Carta, A., Atzori, E.M., Delogu, I., Collu, G., and Loddo, R., Eur. J. Med. Chem., 2017, vol. 141, p. 15. https://doi.org/10.1016/j.ejmech.2017.09.060

    Article  CAS  Google Scholar 

  16. Kumar, A., Varadaraj, B.G., and Singla, R.K., Bull. Fac. Pharm. (Cairo Univ.), 2013, vol. 51, p. 167. https://doi.org/10.1016/j.bfopcu.2013.04.002

    Article  Google Scholar 

  17. Kawazura, H., Takahashi, Y., Shinga, Y., Shimanda, F., Ohto, N., and Tamura, A., Jpn. J. Pharmacol., 1997, vol. 73, p. 317. https://doi.org/10.1254/jjp.73.317

    Article  CAS  Google Scholar 

  18. Palaska, E., Aytemir, M., Uzbay, T., and Erol, D., Eur. J. Med. Chem., 2001, vol. 36, p. 539. https://doi.org/10.1016/S0223-5234(01)01243-0

    Article  CAS  Google Scholar 

  19. Ozgur, D.C., Ümide, D.O., Zafer, A.K., and Yusuf, O., Arch. Pharm. Res., 2009, vol. 32, p. 1293. https://doi.org/10.1007/s12272-009-1915-5

    Article  CAS  Google Scholar 

  20. Singh, G., Goyal, A., Bhatti, R.S., and Arora, S., Int. J. Appl. Nat. Sci., 2017, vol. 3, p. 73. https://www.researchgate.net/profile/Anju-Goyal-4/publication/346017687

    Google Scholar 

  21. Safaei-Ghomi, J., Bamoniri, A.H., and Soltanian-Telkabadi, M., Chem. Heterocycl. Compd., 2006, vol. 42, p. 892. https://doi.org/10.1007/s10593-006-0176-1

    Article  CAS  Google Scholar 

  22. Lokanatha, R.N. and Linganna, N., Synth. Commun., 1997, vol. 21, p. 3737. https://doi.org/10.1080/00397919708007296

    Article  Google Scholar 

  23. Agrawal, N.N. and Soni, P.A., Indian J. Chem., Sect. B, 2004, vol. 43, p. 2700.

    Google Scholar 

  24. Prasad, Y.R., Kumar, P.R., Deepti, C.A., and Ramana, M.V., Asian J. Chem., 2007, vol. 19, p. 4790. https://asianjournalofchemistry.co.in/user/journal/viewarticle.aspx?ArticleID=19_6_92

    CAS  Google Scholar 

  25. Powers, D.G., Casebier, D.S., Fokas, D., Ryan, W.J., Troth, J.R., and Coffen, D.L., Tetrahedron, 1998, vol. 54, p. 4085. https://doi.org/10.1016/S0040-4020(98)00137-9

    Article  CAS  Google Scholar 

  26. Krishna, P.R., Sekhar, E.R., and Morgin, F., Tetrahedron Lett., 2008, vol. 49, p. 6768. https://doi.org/10.1016/j.tetlet.2008.09.037

    Article  CAS  Google Scholar 

  27. Bougrin, K., Loupy, A., and Soufiaoui, M., J. Photochem. Photobiol., C, 2005, vol. 31, p. 139. https://doi.org/10.1016/j.jphotochemrev.2005.07.001

    Article  CAS  Google Scholar 

  28. Rakmak, N., Wiyaratn, W., Bunyakan, C., and Chungsiriporn, J., Chem. Eng. J., 2010, vol. 162, p. 84. https://doi.org/10.1016/j.cej.2010.05.001

    Article  CAS  Google Scholar 

  29. Yuan, G., Zheng, J., Lin, C., Chang, X., and Jiang, H., Mater. Chem. Phys., 2011, vol. 130, p. 387. https://doi.org/10.1016/j.matchemphys.2011.06.058

    Article  CAS  Google Scholar 

  30. Choudhary, V.R. and Dumbre, D.K., Catal. Commun., 2009, vol. 10, p. 1738. https://doi.org/10.1016/j.catcom.2009.05.020

    Article  CAS  Google Scholar 

  31. Swami, M.B., Jadhav, A.H., Mathpati, S.R., Ghuge, H.G., and Patil, S.G., Res. Chem. Intermed., 2017, vol. 43, p. 2033. https://doi.org/10.1007/s11164-016-2745-y

    Article  CAS  Google Scholar 

  32. Munde, D.R., Kagne, R.P., Kalalawe, V.G., Manega­wade, S.N., and Niwdange, S.N., Int. J. Green Herb. Chem., 2018, vol. 7, p. 469. https://doi.org/10.24214/IJGHC/GC/7/3/46976

    Article  CAS  Google Scholar 

  33. Leela Mohana Reddy, A. and Ramaprabhu, S., J. Phys. Chem. C., 2007, vol. 111, p. 7727. https://doi.org/10.1021/jp069006m

    Article  CAS  Google Scholar 

  34. Li, J.F., Hu, L.B., Liu, J., Wang, L., Mark, T.J., and Gruner, G., Appl. Phys. Lett., 2008, vol. 93, article ID 083306. https://doi.org/10.1063/1.2970049

  35. Batzill, M., Sensors, 2006, vol. 6, p. 1345. https://doi.org/10.3390/s6101345

    Article  CAS  Google Scholar 

  36. Li, Z., Wang, H., Liu, P., Zhao, B., and Zhang, Y., Appl. Surf. Sci., 2009, vol. 255, p. 4470. https://doi.org/10.1016/j.apsusc.2009.01.002

    Article  CAS  Google Scholar 

  37. Ma, L.A. and Guo, T.L., Mater. Lett., 2009, vol. 63, p. 295. https://doi.org/10.1016/j.matlet.2008.10.016

    Article  CAS  Google Scholar 

  38. Sharghi, H., Ebrahimpourmoghaddam, S., Memar­zadeh, R., and Javadpour, S., J. Iran. Chem. Soc., 2013, vol. 10, p. 141. https://doi.org/10.1007/s13738-012-0135-y

    Article  CAS  Google Scholar 

  39. Fallah, N.S. and Mokhtary, M., J. Taibah Univ. Sci., 2015, vol. 9, p. 531. https://doi.org/10.1016/j.jtusci.2014.12.004

    Article  Google Scholar 

  40. Dehbashi, M., Aliahmad, M., Shafie, M.R.M., and Ghashang, M., Phosphorus, Sulfur Silicon Relat. Elem., 2013, vol. 188, p. 864. https://doi.org/10.1080/10426507.2012.717139

    Article  CAS  Google Scholar 

  41. Yelwande, A.A., Navgire, M.E., Tayde, D.T., Arbad, B.R., and Lande, M.K., Bull. Korean Chem. Soc., 2012, vol. 33, p. 1856. https://doi.org/10.5012/bkcs.2012.33.6.1856

    Article  CAS  Google Scholar 

  42. Mathapati, S.R., Jadhav, A.H., Swami, M.B., and Dawle, J.K., Lett. Org. Chem., 2019, vol. 16, p. 740. https://doi.org/10.2174/1570178616666181211094040

    Article  CAS  Google Scholar 

  43. Suryawanshi, V.B., Bondge, A.S., Dawle, J.K, and Mathapati, S.R., Polycyclic Aromat. Compd., 2022, vol. 42, p. 4404. https://doi.org/10.1080/10406638.2021.1892777

    Article  CAS  Google Scholar 

  44. Mathapati, S.R., Prasad, D., Atar, A.B., Nagaraja, B.M., Dawle, J.K., and Jadhav, A.H., Mater. Today Proc., 2019, vol. 9, p. 661. https://doi.org/10.1016/j.matpr.2018.10.390

    Article  CAS  Google Scholar 

  45. Mathapati, S.R., Patil, K.N., Mathakari, S.S., Suryawanshi, A.W., and Jadhav, A.H., Phosphorus, Sulfur Silicon Relat. Elem., 2021, vol. 196, p. 538. https://doi.org/10.1080/10426507.2020.1871345

    Article  CAS  Google Scholar 

  46. Gadekar, S.P., Pawar, G.T., Magar, R.R., and Lande, M.K., Polycyclic Aromat. Compd., 2020, vol. 40, p. 126. https://doi.org/10.1080/10406638.2017.1363060

    Article  CAS  Google Scholar 

  47. Aliyan, H., Fazaeli, R., and Tajsaeed, N., Iran. J. Catal., 2013, vol. 3, p. 99.

    CAS  Google Scholar 

  48. Zolfigol, M.A., Baghery, S., Moosavi-Zare, A.R., Vahdat, S.M., Alinezhad, H., and Norouzi, M., RSC Adv., 2015, vol. 5, p. 45027. https://doi.org/10.1039/C5RA02718G

    Article  CAS  Google Scholar 

  49. Mayandi, J., Marikkannan, M., Ragavendran, V., and Jayabal, P., J. NanoSci. NanoTechnol., 2014, vol. 2, p. 707. https://www.researchgate.net/publication/303158244

    Google Scholar 

  50. Vellingiri, L., Annamalai, K., Kandasamy, R., and Kombiah, I., Int. J. Hydrogen Energy, 2018, vol. 43, p. 10396. https://doi.org/10.1016/j.ijhydene.2018.04.120

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

D.B. Muley and S.R. Mathapati have equal contributions to this article.

Corresponding author

Correspondence to S. R. Mathapati.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patki, A.S., Muley, D.B., Kagne, R.P. et al. One-Pot Room-Temperature Protocol for the Synthesis of Pyrazolines Using SnO2 Nanocomposite as Heterogeneous Catalyst. Russ J Org Chem 58, 1455–1465 (2022). https://doi.org/10.1134/S1070428022100116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428022100116

Keywords:

Navigation