Skip to main content
Log in

New Molecular Scaffolds Based on 2,8-Xylylene-2,4,6,8-tetraazabicyclo[3.3.0]octane-3,7-dione

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

A series of novel glycouril derivatives were synthesized through Mannich condensation of 2,8-xylylene-2,4,6,8-tetraazabicyclo[3.3.0]octane-3,7-dione with formaldehyde and alkylamines or diamines. These glycoluril derivatives may be regarded as molecular scaffolds acting as excellent receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme

Similar content being viewed by others

REFERENCES

  1. Rheineck, H., Justus Liebigs Ann. Chem., 1865, vol. 134, p. 219. https://doi.org/10.1002/jlac.18651340209

    Article  Google Scholar 

  2. Schiff, H., Justus Liebigs Ann. Chem., 1877, vol. 189, p. 157. https://doi.org/10.1002/jlac.18771890110

    Article  Google Scholar 

  3. Slezak, F., Hirsch, A., and Rosen, I., J. Org. Chem., 1960, vol. 25, p. 660. https://doi.org/10.1021/jo01074a619

    Article  CAS  Google Scholar 

  4. Kang, J., In, S., and Cho, S.J., Supramol. Chem., 2007, vol. 19, p. 243. https://doi.org/10.1080/10610270701358491

    Article  CAS  Google Scholar 

  5. Smeets, J.W.H., Sijbesma, R.P., Niele, F.G.M., Spek, A.L., Smeets, W.J.J., and Nolte, R.J.M., J. Am. Chem. Soc., 1987, vol. 109, p. 928. https://doi.org/10.1021/ja00237a064

    Article  CAS  Google Scholar 

  6. Ghosh, S., Wu, A., Fettinger, J.C., Zavalij, P.Y., and Isaacs, L., J. Org. Chem., 2008, vol. 73, p. 5915. https://doi.org/10.1021/jo8009424

    Article  CAS  Google Scholar 

  7. Wu, A., Mukhopadhyay, P., Chakraborty, A., Fet­tinger, J.C., and Isaacs, L., J. Am. Chem. Soc., 2004, vol. 126, p. 10035. https://doi.org/10.1021/ja0486972

    Article  CAS  Google Scholar 

  8. Smeets, J.W.H., Sijbesma, R.P., Dalen, L.V., Spek, A.L., Smeets, W.J.J., and Nolte, R.J.M., J. Org. Chem., 1989, vol. 54, p. 3710. https://doi.org/10.1021/jo00276a037

    Article  CAS  Google Scholar 

  9. Sanderson, P.E.J., Kilburn, J.D., and Still, W.C., J. Am. Chem. Soc., 1989, vol. 111, p. 8314. https://doi.org/10.1021/ja00203a062

    Article  CAS  Google Scholar 

  10. Conn, M.M. and Rebek Jr, J., Chem. Rev., 1997, vol. 97, p. 1647. https://doi.org/10.1021/cr9603800

    Article  CAS  Google Scholar 

  11. Rebek Jr, J., Acc. Chem. Res., 1999, vol. 32, p. 278. https://doi.org/10.1021/ar970201g

    Article  Google Scholar 

  12. Hof, F., Craig, S.L., Nuckolls, C., and Rebek Jr, J., Angew. Chem., Int. Ed., 2002, vol. 41, p. 1488. https://doi.org/10.1002/1521-3773(20020503)41:9<1488::AID-ANIE1488>3.0.CO;2-G

    Article  CAS  Google Scholar 

  13. Freeman, W.A., Mock, W.L., and Shih, N.Y., J. Am. Chem. Soc., 1981, vol. 103, p. 7367. https://doi.org/10.1021/ja00414a070

    Article  CAS  Google Scholar 

  14. Lagona, J., Mukhopadhyay, P., Chakrabarti, S., and Isaacs, L., Angew. Chem., Int. Ed., 2005, vol. 44, p. 4844. https://doi.org/10.1002/anie.200460675

    Article  CAS  Google Scholar 

  15. Ni, X., Xiao, X., Cong, H., Zhu, Q., Xue, S., and Tao, Z., Acc. Chem. Res., 2014, vol. 47, p. 1386. https://doi.org/10.1021/ar5000133

    Article  CAS  Google Scholar 

  16. Kim, J., Jung, I., Kim, S., Lee, E., Kang, J., Saka­moto, S., Yamaguchi, K., and Kim, K., J. Am. Chem. Soc., 2000, vol. 122, p. 540. https://doi.org/10.1021/ja993376p

    Article  CAS  Google Scholar 

  17. Day, A.I., Blanch, R.J., Arnold, A.P., Lorenzo, S., Lewis, G.R., and Dance, I., Angew. Chem., Int. Ed., 2002, vol. 41, p. 275. https://doi.org/10.1002/1521-3773(20020118)41:2<275::AID-ANIE275>3.0.CO;2-M

    Article  CAS  Google Scholar 

  18. Reek, J.N.H., Priem, A.H., Engelkamp, H., Rowan, A.E., Elemans, J.A.A.W., and Nolte, R.J.M., J. Am. Chem. Soc., 1997, vol. 119, p. 9956. https://doi.org/10.1021/ja970805f

    Article  CAS  Google Scholar 

  19. Thordarson, P., Bijsterveld, E.J.A., Elemans, J.A.A.W., Kasák, P., Nolte, R.J.M., and Rowan, A.E., J. Am. Chem. Soc., 2003, vol. 125, p. 1186. https://doi.org/10.1021/ja028463n

    Article  CAS  Google Scholar 

  20. Kang, J., Jo, J., and In, S., Tetrahedron Lett., 2004, vol. 45, p. 5225. https://doi.org/10.1016/j.tetlet.2004.05.040

    Article  CAS  Google Scholar 

  21. Kim, H., In, S., and Kang, J., Supramol. Chem., 2006, vol. 18, p. 141. https://doi.org/10.1080/10610270600564702

    Article  CAS  Google Scholar 

  22. Stancl, M., Necas, M., Taraba, J., and Sindelar, V., J. Org. Chem., 2008, vol. 73, p. 4671. https://doi.org/10.1021/jo800699s

    Article  CAS  Google Scholar 

  23. Ma, Z., Gargulakova, Z., Zavalij, P.Y., Sindelar, V., and Isaacs, L., J. Org. Chem., 2010, vol. 75, p. 2934. https://doi.org/10.1021/jo100186q

    Article  CAS  Google Scholar 

  24. Stancl, M., Gilberg, L., Ustrnul, L., Necas, M., and Sindelar, V., Supramol. Chem., 2014, vol. 26, p. 168. https://doi.org/10.1080/10610278.2013.842643

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Guo Wang.

Ethics declarations

The author declares no conflict of interest.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, ZG. New Molecular Scaffolds Based on 2,8-Xylylene-2,4,6,8-tetraazabicyclo[3.3.0]octane-3,7-dione. Russ J Org Chem 58, 1451–1454 (2022). https://doi.org/10.1134/S1070428022100104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428022100104

Keywords:

Navigation