Skip to main content
Log in

Trifluoroethoxylation of Styrenes via Photoredox-Catalyzed Meerwein Reaction

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 01 October 2022

This article has been updated

Abstract

In recent years, visible-light photoredox catalysis has become a widely used synthetic method. Photoredox-catalyzed Meerwein reaction of styrenes in the presence of 2,2,2-trifluoroethanol as a nucleophile afforded the target aryl trifluoroethoxylation products in moderate yields 32–53%. The best results were achieved using [Ru(bpy)3](PF6)2 as a catalyst in the presence of Na2HPO4 in acetonitrile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Fig. 1.
Scheme

Similar content being viewed by others

Change history

REFERENCES

  1. Purser, S., Moore, P.R., Swallow, S., and Gouverneur, V., Chem. Soc. Rev., 2008, vol. 37, p. 320. https://doi.org/10.1039/b610213c

    Article  CAS  Google Scholar 

  2. Hagmann, W.K., J. Med. Chem., 2008, vol. 51, p. 4359. https://doi.org/10.1021/jm800219f

    Article  CAS  Google Scholar 

  3. Yamazaki, T., Taguchi, T., and Ojima, I., Fluorine in Medicinal Chemistry and Chemical Biology, Ojima, I., Ed., Chichester: Wiley–Blackwell, 2009, p. 1. https://doi.org/10.1002/9781444312096.ch1

  4. Ishikawa, M. and Hashimoto, Y., J. Med. Chem., 2011, vol. 54, p. 1539. https://doi.org/10.1021/jm101356p

    Article  CAS  Google Scholar 

  5. Wan, Z.-K., Chenail, E., Xiang, J., Li, H.-Q., Ipek, M., Bard, J., Svenson, K., Mansour, T.S., Xu, X., Tian, X., Suri, V., Hahm, S., Xing, Y., Johnson, C.E., Li, X., Qadri, A., Panza, D., Perreault, M., Tobin, J.F., and Saiah, E., J. Med. Chem., 2009, vol. 52, p. 5449. https://doi.org/10.1021/jm900639u

    Article  CAS  Google Scholar 

  6. O’Hagan, D., J. Org. Chem., 2012, vol. 77, p. 3689. https://doi.org/10.1021/jo300044q

    Article  CAS  Google Scholar 

  7. Barbarich, T.J., Rithner, C.D., Miller, S.M., Ander­son, O.P., and Strauss, S.H., J. Am. Chem. Soc., 1999, vol. 121, p. 4280. https://doi.org/10.1021/ja983552e

    Article  CAS  Google Scholar 

  8. Pethő, B. and Novák, Z., Asian J. Org. Chem., 2019, vol. 8, p. 568. https://doi.org/10.1002/ajoc.201800414

    Article  CAS  Google Scholar 

  9. Pethő, B., Zwillinger, M., Csenki, J.T., Káncz, A.E., Krámos, B., Müller, J., Balogh, G.T., and Novák, Z., Chem. Eur. J., 2017, vol. 23, p. 15628. https://doi.org/10.1002/chem.201704205

    Article  CAS  Google Scholar 

  10. Yang, L., Li, S., Cai, L., Ding, Y., Fu, L., Cai, Z., Ji, H., and Li, G., Org. Lett., 2017, vol. 19, p. 2746. https://doi.org/10.1021/acs.orglett.7b01103

    Article  CAS  Google Scholar 

  11. Zhang, K., Xu, X.-H., and Qing, F.-L., J. Fluorine Chem., 2017, vol. 196, p. 24. https://doi.org/10.1016/j.jfluchem.2016.07.008

    Article  CAS  Google Scholar 

  12. Li, J., Wang, Z., Lu, X., Lin, J., Liu, L., and Zhao, Y., Lett. Org. Chem., 2019, vol. 16, p. 485. https://doi.org/10.2174/1570178615666181108111232

    Article  CAS  Google Scholar 

  13. Ruyet, L., Poisson, T., and Besset, T., Eur. J. Org. Chem., 2021, vol. 2021, p. 3407. https://doi.org/10.1002/ejoc.202100580

    Article  CAS  Google Scholar 

  14. Luo, Y., Hu, M., Ge, J., Li, B., and He, L., Org. Chem. Front., 2022, vol. 9, p. 1593. https://doi.org/10.1039/D1QO01319J

    Article  CAS  Google Scholar 

  15. Terrett, J.A., Cuthbertson, J.D., Shurtleff, V.W., and MacMillan, D.W.C., Nature, 2015, vol. 524, p. 330. https://doi.org/10.1038/nature14875

    Article  CAS  Google Scholar 

  16. Nájera, C., Beletskaya, I.P., and Yus, M., Chem. Soc. Rev., 2019, vol. 48, p. 4515. https://doi.org/10.1039/C8CS00872H

    Article  Google Scholar 

  17. Beletskaya, I.P., Nájera, C., and Yus, M., Russ. Chem. Rev., 2020, vol. 89, p. 250. https://doi.org/10.1070/rcr4916

    Article  CAS  Google Scholar 

  18. Shigehisa, H., Kikuchi, H., and Hiroya, K., Chem. Pharm. Bull., 2016, vol. 64, p. 371. https://doi.org/10.1248/cpb.c15-01024

    Article  CAS  Google Scholar 

  19. Kostromitin, V.S., Zemtsov, A.A., Kokorekin, V.A., Levin, V.V., and Dilman, A.D., Chem. Commun., 2021, vol. 57, p. 5219. https://doi.org/10.1039/D1CC01609A

    Article  CAS  Google Scholar 

  20. Wang, P.-Z., Gao, Y., Chen, J., Huan, X.-D., Xiao, W.-J., and Chen, J.-R., Nat. Commun., 2021, vol. 12, p. 1815. https://doi.org/10.1038/s41467-021-22127-x

    Article  CAS  Google Scholar 

  21. Gao, P., Niu, Y.-J., Yang, F., Guo, L.-N., and Duan, X.-H., Chem. Commun., 2022, vol. 58, p. 730. https://doi.org/10.1039/D1CC05730H

    Article  CAS  Google Scholar 

  22. Babu, S.S., Muthuraja, P., Yadav, P., and Gopinath, P., Adv. Synth. Catal., 2021, vol. 363, p. 1782. https://doi.org/10.1002/adsc.202100136

    Article  CAS  Google Scholar 

  23. Diesendorf, N. and Heinrich, M.R., Synthesis, 2022, vol. 54, p. 1951. https://doi.org/10.1055/s-0040-1719893

    Article  CAS  Google Scholar 

  24. Hering, T., Hari, D.P., and König, B., J. Org. Chem., 2012, vol. 77, p. 10347. https://doi.org/10.1021/jo301984p

    Article  CAS  Google Scholar 

  25. Prasad Hari, D., Hering, T., and König, B., Angew. Chem., Int. Ed., 2014, vol. 53, p. 725. https://doi.org/10.1002/anie.201307051

    Article  CAS  Google Scholar 

  26. Yao, C.-J., Sun, Q., Rastogi, N., and König, B., ACS Catal., 2015, vol. 5, p. 2935. https://doi.org/10.1021/acscatal.5b00314

    Article  CAS  Google Scholar 

  27. Abel, A.S., Kharlamova, A.D., Averin, A.D., and Beletskaya, I.P., Mendeleev Commun., 2021, vol. 31, p. 815. https://doi.org/10.1016/j.mencom.2021.11.015

    Article  CAS  Google Scholar 

  28. Hoque, I.U., Chowdhury, S.R., and Maity, S., J. Org. Chem., 2019, vol. 84, p. 3025. https://doi.org/10.1021/acs.joc.8b03155

    Article  CAS  Google Scholar 

  29. Ouyang, X.-H., Cheng, J., and Li, J.-H., Chem. Commun., 2018, vol. 54, p. 8745. https://doi.org/10.1039/C8CC04526G

    Article  CAS  Google Scholar 

  30. Yamaguchi, E., Tanaka, W., and Itoh, A., Chem. Asian J., 2019, vol. 14, p. 121. https://doi.org/10.1002/asia.201801211

    Article  CAS  Google Scholar 

  31. Lindroth, R., Ondrejková, A., and Wallentin, C.-J., Org. Lett., 2022, vol. 24, p. 1662. https://doi.org/10.1021/acs.orglett.2c00231

    Article  CAS  Google Scholar 

  32. Palav, A., Misal, B., Ganwir, P., Badani, P., and Chaturbhuj, G., Tetrahedron Lett., 2021, vol. 73, article no. 153094. https://doi.org/10.1016/j.tetlet.2021.153094

  33. Fumagalli, G., Boyd, S., and Greaney, M.F., Org. Lett., 2013, vol. 15, p. 4398. https://doi.org/10.1021/ol401940c

    Article  CAS  Google Scholar 

  34. Prier, C.K., Rankic, D.A., and MacMillan, D.W.C., Chem. Rev., 2013, vol. 113, p. 5322. https://doi.org/10.1021/cr300503r

    Article  CAS  Google Scholar 

  35. Zilate, B., Fischer, C., and Sparr, C., Chem. Commun., 2020, vol. 56, p. 1767. https://doi.org/10.1039/C9CC08524F

    Article  CAS  Google Scholar 

  36. Zhang, J., Li, Y., Zhang, F., Hu, C., and Chen, Y., Angew. Chem., Int. Ed., 2016, vol. 55, p. 1872. https://doi.org/10.1002/anie.201510014

    Article  CAS  Google Scholar 

  37. Huang, H., Li, X., Yu, C., Zhang, Y., Mariano, P.S., and Wang, W., Angew. Chem., Int. Ed., 2017, vol. 56, p. 1500. https://doi.org/10.1002/anie.201610108

    Article  CAS  Google Scholar 

  38. Erb, W., Hellal, A., Albini, M., Rouden, J., and Blanchet, J., Chem. Eur. J., 2014, vol. 20, p. 6608. https://doi.org/10.1002/chem.201402487

    Article  CAS  Google Scholar 

Download references

Funding

This study was performed under financial support by the Russian Science Foundation [project nos. 20-73-00103 (optimization of the conditions, synthesis of 1, 2, 810), 19-13-00223P (synthesis of 37)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Abel.

Ethics declarations

The authors declare the absence of conflict of interest.

Additional information

Translated from Zhurnal Organicheskoi Khimii, 2022, Vol. 58, No. 9, pp. 913–925 https://doi.org/10.31857/S0514749222090014.

The original online version of this article was revised: The authors of this article are A.D. Kharlamova, A.S. Abel, A.D. Averin, and I.P. Beletskaya, and A.S. Abel is the corresponding author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharlamova, A.D., Abel, A.S., Averin, A.D. et al. Trifluoroethoxylation of Styrenes via Photoredox-Catalyzed Meerwein Reaction. Russ J Org Chem 58, 1181–1191 (2022). https://doi.org/10.1134/S1070428022090019

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428022090019

Keywords:

Navigation