Skip to main content
Log in

Modification of Silicon Dioxide with Variously Substituted minothiacalix[4]arenes: Organic−Inorganic Nanoparticles or Nucleic Acid Binding

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

A number of new p-tert-butylthiacalix[4]arenes containing one triethoxysilyl fragment and tertiary amino groups in the cone and 1,3-alternate conformations have been synthesized. New hybrid organic−inorganic silicon dioxide nanoparticles with p-tert-butylthiacalix[4]arene fragments have been obtained. It has been shown that nanoparticles formed from p-tert-butylthiacalix[4]arenes in the cone conformation and SiO2 selectively bind salmon milt DNA. Silico dioxide/p-tert-butylthiacalix[4]arene nanoparticles in the 1,3-alternate conformation containing N,N-diethylaminopropyl fragments can bind the model calf thymus DNA. The resulting hybrid materials can be used in medicine as nucleic acid carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Bagwe, R.P., Hilliard, L.R., and Tan, W., Langmuir, 2006, vol. 22, p. 4357. https://doi.org/10.1021/la052797j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Santra, S., Zhang, P., Wang, K., Tapec, R., and Tan, W., Anal. Chem., 2001, vol. 73, p. 4988. https://doi.org/10.1021/ac010406+

    Article  CAS  PubMed  Google Scholar 

  3. Kuzin, Y., Kappo, D., Porfireva, A., Shurpik, D., Stoikov, I., Evtugyn, G., and Hianik, T., Sensors, 2018, vol. 18, p. 3489. https://doi.org/10.3390/s18103489

    Article  CAS  PubMed Central  Google Scholar 

  4. Stoikova, E.E., Sorvin, M.I., Shurpik, D.N., Budnikov, H.C., Stoikov, I.I., and Evtugyn, G.A., Electroanalysis, 2015, vol. 27, p. 440. https://doi.org/10.1002/elan.201400494

    Article  CAS  Google Scholar 

  5. Monger, B.C. and Landry, M.R., Appl. Environ. Microbiol., 1993, vol. 59, p. 905. https://doi.org/10.1128/aem.59.3.905-911.1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang, Y., Tu, J., Wang, D., Zhu, H., Maity, S.K., Qu, X., Bogaert, B., Pei, H., and Zhang, H., Adv. Mater., 2018, vol. 30, p. 1703658. https://doi.org/10.1002/adma.201703658

    Article  CAS  Google Scholar 

  7. Pjura, P.E., Grzeskowiak, K., and Dickerson, R.E., J. Mol. Biol., 1987, vol. 197, p. 257. https://doi.org/10.1016/0022-2836(87)90123-9

    Article  CAS  PubMed  Google Scholar 

  8. Wilson, W.D., Tanious, F.A., Barton, H.J., Jones, R.L., Fox, K., Wydra, R.L., and Strekowski, L., Biochemistry, 1990, vol. 29, p. 8452. https://doi.org/10.1021/bi00488a036

    Article  CAS  PubMed  Google Scholar 

  9. Martin, R.F. and Denison, L., Int. J. Radiat. Oncol. Biol. Phys., 1992, vol. 23, p. 579. https://doi.org/10.1016/0360-3016(92)90014-9

    Article  CAS  PubMed  Google Scholar 

  10. Hasanzadeh, M., Pournaghi-Azar, M.H., Shadjou, N., and Jouyban, A., J. Anal. Chem., 2016, vol. 71, p. 386. https://doi.org/10.1134/S106193481602009X

    Article  CAS  Google Scholar 

  11. Sivasankarapillai, V.S., Pillai, A.M., Rahdar, A., Sobha, A.P., Das, S.S., Mitropoulos, A.C., Mokarra, M.H., and Kyzas, G.Z., Nanomaterials, 2020, vol. 10, p. 852. https://doi.org/10.3390/nano10050852

    Article  CAS  PubMed Central  Google Scholar 

  12. Wang, Y., Sun, S., Zhang, Z., and Shi, D., Adv. Mater., 2018, vol. 30, p. 1705660. https://doi.org/10.1002/adma.201705660

    Article  CAS  Google Scholar 

  13. Xu, S., Lu, H., Zheng, X., and Chen, L., J. Mater. Chem. C, 2013, vol. 1, p. 4406. https://doi.org/10.1039/C3TC30496E

    Article  CAS  Google Scholar 

  14. Rosenholm, J.M., Sahlgren, C., and Lindén, M., Nanoscale, 2010, vol. 2, p. 1870. https://doi.org/10.1039/C0NR00156B

    Article  CAS  PubMed  Google Scholar 

  15. Larsericsdotter, H., Oscarsson, S., and Buijs, J., J. Colloid Interface Sci., 2001, vol. 237, p. 98. https://doi.org/10.1006/jcis.2001.7485

    Article  CAS  PubMed  Google Scholar 

  16. Kesse, S., Boakye-Yiadom, K.O., Ochete, B.O., Opoku-Damoah, Y., Akhtar, F., Filli, M.S., Farooq, M.A., Aquib, M., Mily, B.J.M., Murtaza, G., and Wang, B., Pharmaceutics, 2019, vol. 11, p. 77. https://doi.org/10.3390/pharmaceutics11020077

    Article  CAS  PubMed Central  Google Scholar 

  17. Amirkhanov, R.N., Zarytova, V.F., and Zenkova, M.A., Russ. Chem. Rev., 2017, vol. 86, p. 113. https://doi.org/10.1070/RCR4604/meta

    Article  CAS  Google Scholar 

  18. Li, J., Wang, Y., Zhu, Y., and Oupický, D., J. Control. Release, 2013, vol. 172, p. 589. https://doi.org/10.1016/j.jconrel.2013.04.010

    Article  CAS  PubMed  Google Scholar 

  19. Järver, P., O’Donovan, L., and Gait, M.J., Nucleic. Acid. Ther., 2014, vol. 24, p. 37. https://doi.org/10.1089/nat.2013.0454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lebleu, B., Moulton, H.M., Abes, R., Ivanova, G.D., Abes, S., Stein, D.A., Iversen, P.L., Arzumanov, A.A., and Gait, M.J., Adv. Drug Deliv. Rev., 2008, vol. 60, p. 517. https://doi.org/10.1016/j.addr.2007.09.002

    Article  CAS  PubMed  Google Scholar 

  21. Torres, A.G., Threlfall, R.N., and Gait, M.J., Artif. DNA PNA XNA, 2011, vol. 2, p. 71. https://doi.org/10.4161/adna.17731

    Article  PubMed  PubMed Central  Google Scholar 

  22. Han, L., Zhao, J., Zhang, X., Cao, W., Hu, X., Zou, G., Duan, X., and Liang, X.J., ACS Nano, 2012, vol. 6, p. 7340. https://doi.org/10.1021/nn3024688

    Article  CAS  PubMed  Google Scholar 

  23. Tarahovsky, Y.S. Biochemistry. 2009, 74, p. 1293. https://doi.org/10.1134/S0006297909120013

  24. Saito, Y., Kawakami, S., Yabe, Y., Yamashita, F., and Hashida, M., Biol. Pharm. Bull., 2006, vol. 29, p. 1986. https://doi.org/10.1248/bpb.29.1986

    Article  CAS  PubMed  Google Scholar 

  25. Pelisek, J., Gaedtke, L., DeRouchey, J., Walker, G.F., Nikol, S., and Wagner, E., J. Gene Med., 2006, vol. 8, p. 186. https://doi.org/10.1002/jgm.836

    Article  CAS  PubMed  Google Scholar 

  26. Yakimova, L.S., Ziatdinova, R.V., Evtugyn, V.G., Rizvanov, I.K., and Stoikov, I.I., Russ. Chem. Bull., 2016, vol. 65, p. 1053. https://doi.org/10.1007/s11172-016-1412-1

    Article  CAS  Google Scholar 

  27. Stoikov, I.I., Galukhin, A.V., Zaikov, E.N., and Antipin, I.S., Mendeleev Commun., 2009, vol. 19, p. 193. https://doi.org/10.1016/j.mencom.2009.07.006

    Article  CAS  Google Scholar 

  28. Kubasov, A.S., Turishev, E.S., Golubev, A.V., Bykov, A.Y., Zhizhin, K.Y., and Kuznetsov, N.T., Inorganica Chim. Acta, 2020, vol. 507, p. 119589. https://doi.org/10.1016/j.ica.2020.119589

    Article  CAS  Google Scholar 

  29. Luo, D., Han, E., Belcheva, N., and Saltzman, W.M., J. Control. Release, 2004, vol. 95, p. 333. https://doi.org/10.1016/j.jconrel.2003.11.019

    Article  CAS  PubMed  Google Scholar 

  30. Ukhatskaya, E.V., Kurkov, S.V., Matthews, S.E., and Loftsson, T., J. Pharm. Sci., 2013, vol. 102, p. 3485. https://doi.org/10.1002/jps.23681

    Article  CAS  PubMed  Google Scholar 

  31. Hu, W., Blecking, C., Kralj, M., Šuman, L., Piantanida, I., and Schrader, T., Chem. Eur. J., 2012, vol. 18, p. 3589. https://doi.org/10.1002/chem.201100634

    Article  CAS  PubMed  Google Scholar 

  32. Cleaves, II H.J., Crapster-Pregont, E., Jonsson, C.M., Jonsson, C.L., Sverjensky, D.A., and Hazen, R.A., Chemosphere, 2011, vol. 83, p. 1560. https://doi.org/10.1016/j.chemosphere.2011.01.023

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was financially supported by the Priority-2030 Strategic Academic Leadership Program, Kazan (Volga Region) Federal University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. N. Shurpik or I. I. Stoikov.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated from Zhurnal Organicheskoi Khimii, 2022, Vol. 58, No. 8, pp. 862–877 https://doi.org/10.31857/S0514749222080109.

In memory of Academician A.I. Konovalov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shurpik, R.V., Shurpik, D.N., Gerasimov, A.V. et al. Modification of Silicon Dioxide with Variously Substituted minothiacalix[4]arenes: Organic−Inorganic Nanoparticles or Nucleic Acid Binding. Russ J Org Chem 58, 1141–1153 (2022). https://doi.org/10.1134/S1070428022080103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428022080103

Keywords:

Navigation