Skip to main content
Log in

Kinetics of the Solid-State Cyclization of Glycylglycine Dipeptide

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

The cyclization of glycylglycine dipeptide in the solid state under heating to form 2,5-diketopiperazine was studied, and its temperature range was determined. The possibility of using of the approaches of isoconversion kinetics to determine the kinetic parameters of the reaction, including the activation energy and the Arrhenius constant, is demonstrated. The kinetics of the solid-state cyclization of glycylglycine is best fit by the rate equation for an autocatalytic reaction. The self-assembly of glycylglycine and cyclo(glycylglycyl) from a solution in hexafluoroisopropanol on the surface of highly oriented pyrolytic graphite was studied by atomic force microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Scheme 1.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Zhao, K., Xing, R., and Yan, X., Peptide Sci., 2021, vol. 113, p. e24202. https://doi.org/10.1002/pep2.24202

  2. Ortiz, A. and Sansinenea, E., Curr. Med. Chem., 2017, vol. 24, p. 2773. https://doi.org/10.2174/0929867324666170623092818

    Article  CAS  PubMed  Google Scholar 

  3. Farhadian, S., Shareghi, B., Tirgir, F., Reiisi, S., Dehkordi, N.G., Momeni, L., and Heidari, E., J. Mol. Liq., 2019, vol. 294, p. 1. https://doi.org/10.1016/j.molliq.2019.111585

    Article  CAS  Google Scholar 

  4. Musetti, R., Polizzotto, R., Vecchione, A., Borselli, S., Zulini, L., D’Ambrosio, M., di Toppi, L.D., and Pertot, I., Micron, 2007, vol. 38, p. 643. https://doi.org/10.1016/j.micron.2006.09.001

    Article  CAS  PubMed  Google Scholar 

  5. Kwak, M.-K., Liu, R., and Kang, S.-O., Food Control, 2018, vol. 85, p. 223. https://doi.org/10.1016/j.foodcont.2017.10.001

    Article  CAS  Google Scholar 

  6. Wattana-Amorn, P., Charoenwongsa, W., Williams, C., Crump, M.P., and Apichaisataienchote, B., Nat. Prod. Res., 2016, vol. 30, p. 1980. https://doi.org/10.1080/14786419.2015.1095747

    Article  CAS  PubMed  Google Scholar 

  7. Tomassini, J.E., Davies, M.E., Hastings, J.C., Lingham, R., Mojena, M., Raghoobar, S.L., Singh, S.B., Tkacz, J.S., and Goetz, M.A., Antimicrob. Agents Chemother., 1996, vol. 40, p. 1189. https://doi.org/10.1128/AAC.40.5.1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lozano-González, M., Ovalle-Magallanes, B., Rangel-Grimaldo, M., De La Torre-Zavala, S., Noriega, L.G., Tovar-Palacio, C., Tovar, A.R., and Mata, R., New J. Chem., 2019, vol. 43, p. 7756. https://doi.org/10.1039/C9NJ00645A

    Article  Google Scholar 

  9. Turkez, H., Cacciatore, I., Arslan, M.E., Fornasari, E., Marinelli, L., Di Stefano, A., and Mardinoglu, A., Biomolecules, 2020, vol. 10, p. 737. https://doi.org/10.3390/biom10050737

    Article  CAS  PubMed Central  Google Scholar 

  10. Mishra, A.K., Choi, J., Choi, S.-J., and Baek, K.-H., Molecules, 2017, vol. 22, p. 1796. https://doi.org/10.3390/molecules22101796

    Article  CAS  PubMed Central  Google Scholar 

  11. Manchineella, S. and Govindaraju, T., ChemPlusChem, 2017, vol. 82, p. 88. https://doi.org/10.1002/cplu.201600450

    Article  CAS  PubMed  Google Scholar 

  12. Tao, K., Xue, B., Li, Q., Hu, W., Shimon, L.J.W., Makam, P., Si, M., Yan, X., Zhang, M., Cao, Y., Yang, R., Li, J., and Gazit, E., Mater. Today, 2019, vol. 30, p. 10. https://doi.org/10.1016/j.mattod.2019.04.002

    Article  CAS  Google Scholar 

  13. Wang, Y.-M., Zeng, Q., He, L., Yin, P., Sun, Y., Hu, W., and Yang, R., iScience, 2021, vol. 24, p. 102274. https://doi.org/10.1016/j.isci.2021.102274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pianowski, Z.L., Karcher, J., and Schneider, K., Chem. Commun., 2016, vol. 52, p. 3143. https://doi.org/10.1039/c5cc09633b

    Article  CAS  Google Scholar 

  15. Yang, M., Yuan, C., Shen, G., Chang, R., Xing, R., and Yan, X., J. Coll. Interface Sci., 2019, vol. 557, p. 458. https://doi.org/10.1016/j.jcis.2019.09.049

    Article  CAS  Google Scholar 

  16. Ienaga, K., Nakamura, K., and Goto, T., Tetrahedron Lett., 1987, vol. 28, p. 1285. https://doi.org/10.1016/S0040-4039(00)95347-4

    Article  CAS  Google Scholar 

  17. De Rosa, S., Mitova, M., and Tommonaro, M., Biomol. Eng., 2003, vol. 20, p. 311. https://doi.org/10.1016/S1389-0344(03)00038-8

    Article  CAS  PubMed  Google Scholar 

  18. Adamczeski, M., Reed, A.R., and Crews, P., J. Nat. Prod., 1995, vol. 58, p. 201. https://doi.org/10.1021/np50116a007

    Article  CAS  PubMed  Google Scholar 

  19. Rhoden, C.R., Rivera, D.G., Kreye, O., Bauer, A.K., Westermann, B., and Wessjohann, L.A., J. Comb. Chem., 2009, vol. 11, p. 1078. https://doi.org/10.1021/cc900106u

    Article  CAS  PubMed  Google Scholar 

  20. Kurbasic, M., Semeraro, S., Garcia, A.M., Kralj, S., Parisi, E., Deganutti, C., De Zorzi, R., and Marchesan, S., Synthesis, 2019, vol. 51, p. 2839. https://doi.org/10.1055/s-0037-1612376

    Article  CAS  Google Scholar 

  21. Borthwick, D., Chem. Rev., 2012, vol. 112, p. 3641. https://doi.org/10.1021/cr200398y

    Article  CAS  PubMed  Google Scholar 

  22. Ziganshin, M.A., Safiullina, A.S., Gerasimov, A.V., Ziganshina, S.A., Klimovitskii, A.E., Khayarov, K.R., and Gorbatchuk, V.V., J. Phys. Chem. B, 2017, vol. 121, p. 8603. https://doi.org/10.1021/acs.jpcb.7b06759

    Article  CAS  PubMed  Google Scholar 

  23. Smith, J., Ali, F.I., and Soldatov, D.V., CrstEngComm, 2014, vol. 16, p. 7196. https://doi.org/10.1039/c4ce00630e

    Article  CAS  Google Scholar 

  24. Pérez-Mellor, A., Le Barbu-Debus, K., and Zehnacker, A., Chirality, 2020, vol. 32, p. 693. https://doi.org/10.1002/chir.23195

    Article  CAS  PubMed  Google Scholar 

  25. Ziganshin, M.A., Gerasimov, A.V., Ziganshina, S.A., Gubina, N.S., Abdullina, G.R., and Klimovitskii, A.E., J. Therm. Anal. Calorim., 2016, vol. 125, p. 905. https://doi.org/10.1007/s10973-016-5458-y

    Article  CAS  Google Scholar 

  26. Ziganshin, M.A., Larionov, R.A., Gerasimov, A.V., Ziganshina, S.A., Klimovitskii, A.E., Khayarov, K.R., Mukhametzyanov, T.A., and Gorbatchuk, V.V., J. Pept. Sci., 2019, vol. 25, p. e3177. https://doi.org/10.1002/psc.3177

  27. Safiullina, A.S., Buzyurov, A.V., Ziganshina, S.A., Gerasimov, A.V., Schick, C., Gorbatchuk, V.V., and Ziganshin, M.A., Thermochim. Acta, 2020, vol. 692, p. 178748. https://doi.org/10.1016/j.tca.2020.178748

    Article  CAS  Google Scholar 

  28. Hendricker, A.D. and Voorhees, K.J., J. Anal. Appl. Pyrolysis, 1996, vol. 36, p. 51. https://doi.org/10.1016/0165-2370(95)00920-5

    Article  CAS  Google Scholar 

  29. Ziganshin, M.A., Ziganshina, S.A., Gubina, N.S., Gerasimov, A.V., Gorbatchuk, V.V., and Bukharaev, A.A., Orient J. Chem., 2015, vol. 31, p. 1977. https://doi.org/10.13005/ojc/31041

    Article  CAS  Google Scholar 

  30. Do, H.T., Chua, Y.Z., Habicht, J., Klinksiek, M., Hallermann, M., Zaitsau, D., Schick, C., and Held, C., RSC Adv., 2019, vol. 9, p. 32722. https://doi.org/10.1039/C9RA05730G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ziganshin, M.A., Morozova, A.S., Ziganshina, S.A., Vorobev, V.V., Suwińska, K., Bukharaev, A.A., and Gorbatchuk, V.V., Mol. Cryst. Liq. Cryst., 2019, vol. 690, p. 67.

    Article  CAS  Google Scholar 

  32. Vyazovkin, S., Burnham, A.K., Criado, J.M., Pérez-Maqueda, L.A., Popescu, C., and Sbirrazzuoli, N., Thermochim. Acta, 2011, vol. 520, p. 1. https://doi.org/10.1016/j.tca.2011.03.034

    Article  CAS  Google Scholar 

  33. Vyazovkin, S., Chrissafis, K., Di Lorenzo, M.R., Koga, N., Pijolat, M., Roduit, B., Sbirrazzuoli, N., and Suñol, J.J., Thermochim. Acta, 2014, vol. 590, p. 1. https://doi.org/10.1016/j.tca.2014.05.036

    Article  CAS  Google Scholar 

  34. Friedman, H.L., J. Polym. Sci. A, 1964, vol. 6, p. 183. https://doi.org/10.1002/polc.5070060121

    Article  Google Scholar 

  35. Ozawa, T., Bull. Chem. Soc. Jpn, 1965, vol. 38, p. 1881. https://doi.org/10.1246/bcsj.38.1881

    Article  CAS  Google Scholar 

  36. Ozawa, T., Thermochim. Acta, 1992, vol. 203, p. 159. https://doi.org/10.1016/0040-6031(92)85192-X

    Article  CAS  Google Scholar 

  37. Flynn, J.H. and Wall, L.A., J. Res. Natl. Bur. Stand., 1966, vol. 70, p. 478. https://doi.org/10.6028/jres.070A.043

    Article  Google Scholar 

  38. Logvinenko, V.A., Dybtsev, D.N., Bolotov, V.A., and Fedin, V.P., J. Therm. Anal. Calorim., 2015, vol. 121, p. 491. https://doi.org/10.1007/s10973-015-4430-6

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Priority-2030 strategic academic leadership program, Kazan (Volga Region) Federal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Larionov.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated from Zhurnal Organicheskoi Khimii, 2022, Vol. 58, No. 8, pp. 787–795 https://doi.org/10.31857/S051474922208002X.

In memory of Academician A.I. Konovalov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larionov, R.A., Akhmetshin, S.R., Gerasimov, A.V. et al. Kinetics of the Solid-State Cyclization of Glycylglycine Dipeptide. Russ J Org Chem 58, 1076–1083 (2022). https://doi.org/10.1134/S1070428022080024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428022080024

Keywords:

Navigation