Skip to main content
Log in

Possible Skeletal Transformations of Cyclooctatetraene in Its Thermal Isomerization

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

All possible transition state structures that could mediate thermally induced skeletal transformations of cyclooctatetraene in an oxygen-free atmosphere have been identified on the basis of the properties of the π-conjugated system in cyclic polyenes. DFT study of the potential energy surface and the nature of localized stationary points using the B3LYP functional and 6-31G* basis set confirmed the existence of 30 transition states. A scheme for the thermal isomerization of cyclooctatetraene, which includes 47 forward and reverse reactions, was constructed by the Gonzalez–Schlegel method for the determination of potential barriers. The obtained results were consistent with the available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Scheme
Scheme
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Denisov, E.T., Russ. Chem. Rev., 2000, vol. 69, p. 166. https://doi.org/10.1070/RC2000v069n02ABEH000560

    Article  Google Scholar 

  2. Müller, T. and Mingos, D., Transit. Met. Chem., 1995, vol. 20, p. 533. https://doi.org/10.1007/BF00136415

    Article  Google Scholar 

  3. Serezhkin, V.N., Pushkin, D.V., Serezhkina, L.B., Sevast’yanov, V.G., and Kuznetsov, N.T., Zh. Neorg. Khim., 2005, vol. 50, p. 2019.

    CAS  Google Scholar 

  4. Tomilin, O.B., Tanaseichuk, B.S., and Boyarkina, O.V., Russ. J. Org. Chem., 2016, vol. 52, p. 1576. https://doi.org/10.1134/S1070428016110051

    Article  CAS  Google Scholar 

  5. Rodionova, E.V., Tomilin, O.B., and Fomina, L.V., Russ. J. Org. Chem., 2021, vol. 57, p. 135. https://doi.org/10.1134/S1070428021020019

    Article  CAS  Google Scholar 

  6. Scott, L.T. and Jones, M., Chem. Rev., 1972, vol. 72, p. 181. https://doi.org/10.1021/cr60276a004

    Article  CAS  Google Scholar 

  7. Andrés, J.L., Castaño, O., Morreale, A., Palmeiro, R., and Gomperts, R., Chem. Phys., 1998, vol. 108, p. 203. https://doi.org/10.1063/1.475388

    Article  Google Scholar 

  8. Garavelli, M., Bernardi, F., Cembran, A., Castano, O., Frutos, L.M., Merchan, M., and Olivucci, M., J. Am. Chem. Soc., 2002, vol. 124, p. 13770. https://doi.org/10.1021/ja020741v

    Article  CAS  PubMed  Google Scholar 

  9. Klärner, F.G., Angew. Chem., Int. Ed., 2001, vol. 40, p. 3977. https://doi.org/10.1002/1521-3773

    Article  Google Scholar 

  10. Deslongchamps, G. and Deslongchamps, P., J. Org. Chem., 2018, vol. 83, p. 5751. https://doi.org/10.1021/acs.joc.8b00809

    Article  CAS  PubMed  Google Scholar 

  11. Wu, J.I., Fernandez, I., Mo, Y., and Schleyer, P.v.R., J. Chem. Theory Comput., 2012, vol. 8, p. 1280. https://doi.org/10.1021/ct3000553

    Article  CAS  PubMed  Google Scholar 

  12. Nishinaga, T., Ohmae, T., and Iyoda, M., Symmetry, 2010, vol. 2, p. 76. https://doi.org/10.3390/sym2010076

    Article  CAS  Google Scholar 

  13. Hassenrück, K., Martin, H.-D., and Walsh, R., Chem. Rev., 1989, vol. 89, p. 1125. https://doi.org/10.1021/cr00095a010

    Article  Google Scholar 

  14. Jiao, H.J., Nagelkerke, R., Kurtz, H.A., Williams, R.V., Borden, W.T., and Schleyer, P.v.R., J. Am. Chem. Soc., 1997, vol. 119, p. 5921. https://doi.org/10.1021/ja963165+

    Article  CAS  Google Scholar 

  15. Rücker, C. and Prinzbach, H., Angew. Chem., Int. Ed., 1985, vol. 24, p. 411. https://doi.org/10.1002/anie.198504111

    Article  Google Scholar 

  16. Christl, M., Lang, R., and Herzog, C., Tetrahedron, 1986, vol. 42, p. 1585. https://doi.org/10.1016/S0040-4020(01)87575-X

    Article  CAS  Google Scholar 

  17. Smith, L.R., Gream, G.E., and Meinwald, J., J. Org. Chem., 1977, vol. 42, p. 927. https://doi.org/10.1021/jo00426a001

    Article  CAS  Google Scholar 

  18. Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S., Windus, T.L., Dupuis, M., and Montgomery, J.A., J. Comput. Chem., 1993, vol. 14, p. 1347. https://doi.org/10.1002/jcc.540141112

    Article  CAS  Google Scholar 

  19. Gonzalez, C. and Schlegel, H.B., J. Phys. Chem., 1990, vol. 94, p. 5523. https://doi.org/10.1021/j100377a021

    Article  CAS  Google Scholar 

  20. Seyferth, D., Organometallics, 2004, vol. 23, p. 3562. https://doi.org/10.1021/om0400705

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Rodionova.

Ethics declarations

The authors declare the absence of conflict of interest.

Additional information

Translated from Zhurnal Organicheskoi Khimii, 2022, Vol. 58, No. 4, pp. 392–405 https://doi.org/10.31857/S0514749222040048.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomilin, O.B., Fomina, L.V. & Rodionova, E.V. Possible Skeletal Transformations of Cyclooctatetraene in Its Thermal Isomerization. Russ J Org Chem 58, 488–498 (2022). https://doi.org/10.1134/S1070428022040042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428022040042

Keywords:

Navigation