Skip to main content
Log in

Synthesis of 3,9-Dialkyl-1,8-cineole Derivatives Based on Diels–Alder Adducts of Levoglucosenone with Isoprene and Butadiene

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

3,9-Dialkyl-substituted 1,8-cineole derivatives were synthesized by assembling the 2-oxabi­cyclo­[2.2.2]octane system on the basis of Diels–Alder adducts of levoglucosenone with isoprene and butadiene. Methylated adduct of levoglucosenone and isoprene showed a strong tendency to form 2-oxabicyclo[2.2.2]­octane system via intramolecular oxacyclization which readily occurred under conditions of double bond hydrogenation, attempted dehydration, and opening of the 1,6-anhydro bridge in the carbohydrate fragment, as well as by the action of electrophiles. Methylated adduct of levoglucosenone and butadiene underwent intra­molecular oxacyclization by the action of electrophiles. The presence of a methyl group in the cyclohexene ring of the adduct of levoglucosenone and isoprene forces the oxacyclization to selectively produce 1,5-epoxy derivative, whereas 1,4-epoxide is formed when such methyl group is absent. The use of methylene chloride as solvent increases the yield in the methylation of the keto group in the initial adducts with methylmagnesium iodide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme

Similar content being viewed by others

REFERENCES

  1. Buchbauer, G. and Ilic, A., Natural Products, Rama­wat, K.G. and Mérillon, J.-M., Berlin: Springer, 2013, p. 4109. https://doi.org/10.1007/978-3-642-22144-6_183

  2. Klocke, J.A., Darlington, M.V., and Balandrin, M.R., J. Chem. Ecol., 1987, vol. 13, p. 2131. https://doi.org/10.1007/BF01012562

    Article  CAS  PubMed  Google Scholar 

  3. Bohlmann, F. and Zdero, C., Phytochemistry, 1982, vol. 21, p. 1697. https://doi.org/10.1016/S0031-9422(82)85042-5

    Article  CAS  Google Scholar 

  4. Weyerstahl, P., Marschall-Weyerstahl, H., and Christian­sen, C., Flavour Fragrance J., 1989, vol. 4, p. 93. https://doi.org/10.1002/ffj.2730040302

    Article  CAS  Google Scholar 

  5. Niwa, M., Sugie, Y., and Yamamura, S., Phytochemistry, 1981, vol. 20, p. 1137. https://doi.org/10.1016/0031-9422(81)83046-4

    Article  CAS  Google Scholar 

  6. Schilcher, H., Novrely, L., Ubik, K., Motl, O., and Herout, V., Arch. Pharm., 1976, vol. 309, p. 189. https://doi.org/10.1002/ardp.19763090305

    Article  CAS  Google Scholar 

  7. Weyerstahl, P., Schneider, S., Marschall, H., and Rustaiyan, A., Justus Liebigs Ann. Chem., 1993, vol. 1993, p. 111. https://doi.org/10.1002/jlac.199319930120

    Article  Google Scholar 

  8. Weyerstahl, P., Schneider, S., Marschall, H., and Rustaiyan, A., Flavour Fragrance J., 1993, vol. 8, p. 139. https://doi.org/10.1002/ffj.2730080304

    Article  CAS  Google Scholar 

  9. Wu, C.-L., Huang, C.-D., and Shih, T.-L., Tetrahedron Lett., 1993, vol. 34, p. 4855. https://doi.org/10.1016/S0040-4039(00)74108-6

    Article  CAS  Google Scholar 

  10. Ngo, K., Wong, W.T., and Brown, G.D., J. Nat. Prod., 1999, vol. 62, p. 549. https://doi.org/10.1021/np980289m

    Article  CAS  PubMed  Google Scholar 

  11. Fukuzawa, A., Shea, C.M., Masamune, T., Furusaki, A., Katayama, C., and Matsumoto, T., Tetrahedron Lett., 1981, vol. 22, p. 4087. https://doi.org/10.1016/S0040-4039(01)82072-4

    Article  CAS  Google Scholar 

  12. Bringmann, G., Lang, G., Maksimenka, K., Hamm, A., Gulder, T.A.M., Dieter, A., Bull, A.T., Stach, J.E.M., Kocher, N., Müller, W.E.G., and Fiedler, H.P., Phyto­chemistry, 2005, vol. 66, p. 1366. https://doi.org/10.1016/j.phytochem.2005.04.010

    Article  CAS  Google Scholar 

  13. Abdalla, M.A., Yadav, P.P., Dittrich, B., Schüffler, A., and Laatsch, H., Org. Lett., 2011, vol. 13, p. 2156. https://doi.org/10.1021/ol103076y

    Article  CAS  PubMed  Google Scholar 

  14. Bhate, P. and Horton, D., Carbohydr. Res., 1983, vol. 122, p. 189. https://doi.org/10.1016/0008-6215(83)88330-X

    Article  CAS  Google Scholar 

  15. Sharipov, B.T., Krasnoslobodtseva, O.Yu., Spiri­khin, L.V., and Valeev, F.A., Russ. J. Org. Chem., 2010, vol. 46, p. 226. https://doi.org/10.1134/S1070428010020144

    Article  CAS  Google Scholar 

  16. Valeev, F.A., Gaisina, I.N., Sagitdinova, H.F., Shitiko­va, O.V., and Miftakhov, M.S., Russ. J. Org. Chem., 1996, vol. 32, p. 1319.

    Google Scholar 

  17. Sarotti, A.M., Suárez, A.G., and Spanevello, R.A., Tetrahedron Lett., 2011, vol. 52, p. 3116. https://doi.org/10.1016/j.tetlet.2011.04.021

    Article  CAS  Google Scholar 

  18. Davydova, A.N., Sharipov, B.T., and Valeev, F.A., Russ. J. Org. Chem., 2015, vol. 51, p. 1408. https://doi.org/10.1134/S1070428015100097

    Article  CAS  Google Scholar 

  19. Jackowski, O., Chretien, F., Didierjean, C., and Chapleur, Y., Carbohydr. Res., 2012, vol. 356, p. 93. https://doi.org/10.1016/j.carres.2012.02.026

    Article  CAS  PubMed  Google Scholar 

  20. Bondavalli, F., Schenone, P., Lanteri, S., and Ranise, A., J. Chem. Soc., Perkin Trans. 1, 1977, p. 430. https://doi.org/10.1039/P19770000430

  21. Carman, R.M., Robinson, W.T., and Wallis, C.J., Aust. J. Chem., 2005, vol. 58, p. 785. https://doi.org/10.1071/CH05144

    Article  CAS  Google Scholar 

  22. Ward, D.D. and Shafizadeh, F., Carbohydr. Res., 1981, vol. 95, p. 155. https://doi.org/10.1016/S0008-6215(00)85573-1

    Article  CAS  Google Scholar 

  23. Wolinsky, J., Hutchins, R.O., and Thorstenson, J.H., Tetrahedron, 1971, vol. 27, p. 753. https://doi.org/10.1016/S0040-4020(01)92470-6

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Circa Group (Melbourne, Australia) for supplying commercial levoglucosenone. The spectral and analytical data were obtained using the facilities of the Chemistry joint center (Ufa Institute of Chemistry, Ufa Federal Research Center, Russian Academy of Sciences) and Agidel joint center (Ufa Federal Research Center, Russian Academy of Sciences).

Funding

This study was performed according to state assignment “Carbohydrates in the Synthesis of Chiral Carbo- and Heterocyclic Biologically Active Compounds.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. T. Sharipov.

Ethics declarations

The authors declare the absence of conflict of interest.

Additional information

Translated from Zhurnal Organicheskoi Khimii, 2022, Vol. 58, No. 3, pp. 281–292 https://doi.org/10.31857/S0514749222030065.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharipov, B.T., Davydova, A.N. & Valeev, F.A. Synthesis of 3,9-Dialkyl-1,8-cineole Derivatives Based on Diels–Alder Adducts of Levoglucosenone with Isoprene and Butadiene. Russ J Org Chem 58, 295–305 (2022). https://doi.org/10.1134/S107042802203006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107042802203006X

Keywords:

Navigation