Skip to main content
Log in

Comparison of the Catalytic Activities of Copper(I) Iodide and Copper Nanoparticles in the N-Arylation of Adamantane-Containing Amines

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

N-Arylation of n-octylamine and adamantane-containing amines with iodobenzene and its deriva­tives has been performed in DMSO using copper(I) iodide and copper nanoparticles in the presence of various ligands as catalysts. In all cases, 2-isobutyrylcyclohexanone turned out to be the most efficient ligand, and higher yields of the arylation products were obtained in the presence of copper nanoparticles. The nanocatalyst can be recycled 9 times without significant loss of yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Scheme

Similar content being viewed by others

REFERENCES

  1. Sambiagio, C., Marsden, S.P., Blacker, A.J., and McGowan, P.C., Chem. Soc. Rev., 2014, vol. 43, p. 3525. https://doi.org/10.1039/C3CS60289C

    Article  CAS  PubMed  Google Scholar 

  2. Okano, K., Tokuyama, H., and Fukuyama, T., Chem. Commun., 2014, vol. 50, p. 13650. https://doi.org/10.1039/C4CC03895A

    Article  CAS  Google Scholar 

  3. Neetha, M., Saranya, S., Harry, N.A., and Anilkumar, G., ChemistrySelect, 2020, vol. 5, p. 736. https://doi.org/10.1002/slct.201904436

    Article  CAS  Google Scholar 

  4. Beletskaya, I.P. and Averin, A.D., Russ. Chem. Rev., 2021, vol. 90, p. 1359. https://doi.org/10.1070/RCR4999

    Article  Google Scholar 

  5. Tang, B.-X., Guo, S.-M., Zhang, M.-B., and Li, J.-H., Synthesis, 2008, vol. 2008, no. 11, p. 1707. https://doi.org/10.1055/s-2008-1067014

    Article  CAS  Google Scholar 

  6. Rout, L., Jammi, S., and Punniyamurthy, T., Org. Lett., 2007, vol. 9, p. 3397. https://doi.org/10.1021/ol0713887

    Article  CAS  PubMed  Google Scholar 

  7. Thathagar, M.B., Beckers, J., and Rothenberg, G., J. Am. Chem. Soc., 2002, vol. 124, p. 11858. https://doi.org/10.1021/ja027716+

    Article  CAS  PubMed  Google Scholar 

  8. Thathagar, M.B., Beckers, J., and Rothenberg, G., Green Chem., 2004, vol. 6, p. 215. https://doi.org/10.1039/B401586J

    Article  CAS  Google Scholar 

  9. Gawande, M.B., Goswami, A., Felpin, F.-X., Asefa, T., Huang, X., Silva, R., Zou, X., Zboril, R., and Varma, R.S., Chem. Rev., 2016, vol. 116, p. 3722. https://doi.org/10.1021/acs.chemrev.5b00482

    Article  CAS  PubMed  Google Scholar 

  10. Averin, A.D., Abel, A.S., Grigorova, O.K., Laty­shev, G.V., Kotovshchikov, Y.N., Mitrofanov, A.Y., Bessmertnykh-Lemeune, A., and Beletskaya, I.P., Pure Appl. Chem., 2020, vol. 92, p. 1181. https://doi.org/10.1515/pac-2020-0301

    Article  CAS  Google Scholar 

  11. Wanka, L., Iqbal, K., and Schreiner, P.R., Chem. Rev., 2013, vol. 113, p. 3516. https://doi.org/10.1021/cr100264t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stankova, I., Chuchkov, K., Chayrov, R., Mukova, L., Galabov, A., Marinkova, D., and Danalev, D., Int. J. Peptide Res. Ther., 2020, vol. 26, p. 1781. https://doi.org/10.1007/s10989-019-09983-4

    Article  CAS  Google Scholar 

  13. Chayrov, R., Parisis, N.A., Chatziathanasiadou, M.V., Vrontaki, E., Moschovou, K., Melagraki, G., Sbirkova-Dimitrova, H., Shivachev, B., Schmidtke, M., Mitrev, Y., Sticha, M., Mavromoustakos, T., Tzakos, A.G., and Stankova, I., Molecules, 2020, vol. 25, article no. 3989. https://doi.org/10.3390/molecules25173989

  14. Wu, Y.-J., Guernon, J., McClure, A., Luo, G., Rajamani, R., Ng, A., Easton, A., Newton, A., Bourin, C., Parker, D., Mosure, K., Barnaby, O., Soars, M.G., Knox, R.J., Matchett, M., Pieschl, R., Herrington, J., Chen, P., Sivarao, D.V., Bristow, L.J., Meanwell, N.A., Bronson, J., Olson, R., Thomp­son, L.A., and Dzierba, C., Bioorg. Med. Chem., 2017, vol. 25, p. 5490. https://doi.org/10.1016/j.bmc.2017.08.012

    Article  CAS  PubMed  Google Scholar 

  15. Venier, O., Pascal, C., Braun, A., Namane, C., Mougenot, P., Crespin, O., Pacquet, F., Mougenot, C., Monseau, C., Onofri, B., Dadji-Faïhun, R., Leger, C., Ben-Hassine, M., Van-Pham, T., Ragot, J.-L., Philippo, C., Farjot, G., Noah, L., Maniani, K., Boutarfa, A., Nicolaï, E., Guillot, E., Pruniaux, M.-P., Güssregen, S., Engel, C., Coutant, A.-L., de Miguel, B., and Castro, A., Bioorg. Med. Chem. Lett., 2013, vol. 23, p. 2414. https://doi.org/10.2210/pdb4hx5/pdb

    Article  CAS  PubMed  Google Scholar 

  16. Studzińska, R., Kupczyk, D., Płaziński, W., Baum­gart, S., Bilski, R., Paprocka, R., and Kołodziejska, R., Int. J. Mol. Sci., 2021, vol. 22, p. 8609. https://doi.org/10.3390/ijms22168609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wahyudi, S., Soepriyanto, S., Mubarok M.Z., and Sutarno, Mater. Sci. Eng., 2018, vol. 395, article ID 012014. https://doi.org/10.1088/1757-899X/395/1/012014

  18. Shilimkar, T.N. and Anuse, M.A., Sep. Purif. Technol., 2002, vol. 26, p. 185. https://doi.org/10.1016/S1383-5866(01)00166-6

    Article  CAS  Google Scholar 

  19. Shilimkar, T.N., Kolekar, S.S., and Anuse, M.A., Sep. Purif. Technol., 2005, vol. 42, p. 55. https://doi.org/10.1016/j.seppur.2004.06.004

    Article  CAS  Google Scholar 

  20. Gopalan, B., Thomas, A., and Shah, D.M., PCT Int. Patent Appl. Pub. no. WO 2006090244, 2006; Chem. Abstr., 2006, vol. 145, no. 292604.

  21. Novakov, I.A., Kulev, I.A., Radchenko, S.S., Birznieks, K.A., Boreko, E.I., Vladyko, G.V., and Korob­chenko, L.V., Pharm. Chem. J., 1987, vol. 21, p. 287. https://doi.org/10.1007/BF00767400

    Article  Google Scholar 

  22. Popov, Yu.V., Mokhov, V.M., and Tankabekyan, N.A., Russ. J. Appl. Chem., 2013, vol. 86, p. 404. https://doi.org/10.1134/S1070427213030191

    Article  CAS  Google Scholar 

  23. Novikov, S.S., Khardin, A.P., Radchenko, S.S., Nova­kov, I.A., Orlinson, B.S., Blinov, V.F., Gorelov, V.I., and Zamakh, V.P., USSR Inventor’s Certificate no. 682507, 1978; Chem. Abstr., 1979, vol. 91, no. P193887e.

  24. Novakov, I.A., Orlinson, B.S., Savelyev, E.N., Potaenkova, E.A., and Shilin, A.K., RU Patent no. 2495020 C1, 2013.

  25. Averin, A.D., Ranyuk, E.R., Golub, S.L., Buryak, A.K., Savelyev, E.N., Orlinson, B.S., Novakov, I.A., and Beletskaya, I.P., Synthesis, 2007, vol. 2007, p. 2215. https://doi.org/10.1055/s-2007-983760

    Article  CAS  Google Scholar 

  26. Panchenko, S.P., Abel, A.S., Averin, A.D., Maloshits­kaya, O.A., Savelyev, E.N., Orlinson, B.S., Nova­kov, I.A., and Beletskaya, I.P., Russ. J. Org. Chem., 2017, vol. 53, p. 1497. https://doi.org/10.1134/S1070428017100025

    Article  CAS  Google Scholar 

  27. Zeng, H., Cao, D., Qiu, Z., and Li, C.-J., Angew. Chem., Int. Ed., 2018, vol. 57, p. 3752. https://doi.org/10.1002/anie.201712211

    Article  CAS  Google Scholar 

Download references

Funding

This study was performed under financial support by the Ministry of Science and Higher Education of the Russian Foundation (project no. 075-15-2021-959, Sep 27, 2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Averin.

Ethics declarations

The authors declare the absence of conflict of interest.

Additional information

Translated from Zhurnal Organicheskoi Khimii, 2022, Vol. 58, No. 1, pp. 23–35 https://doi.org/10.31857/S0514749222010025.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murashkina, A.V., Averin, A.D., Panchenko, S.P. et al. Comparison of the Catalytic Activities of Copper(I) Iodide and Copper Nanoparticles in the N-Arylation of Adamantane-Containing Amines. Russ J Org Chem 58, 15–24 (2022). https://doi.org/10.1134/S107042802201002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107042802201002X

Keywords:

Navigation